scholarly journals Drought legacies on soil respiration and microbial community in a Mediterranean forest soil under different soil moisture and carbon inputs

Geoderma ◽  
2022 ◽  
Vol 405 ◽  
pp. 115425
Author(s):  
Lei Liu ◽  
Marc Estiarte ◽  
Per Bengtson ◽  
Jian Li ◽  
Dolores Asensio ◽  
...  
Forests ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 435 ◽  
Author(s):  
Jiacong Zhou ◽  
Xiaofei Liu ◽  
Jinsheng Xie ◽  
Maokui Lyu ◽  
Yong Zheng ◽  
...  

Forest soil respiration plays an important role in global carbon (C) cycling. Owing to the high degree of C and nitrogen (N) cycle coupling, N deposition rates may greatly influence forest soil respiration, and possibly even global C cycling. Soil microbes play a crucial role in regulating the biosphere–atmosphere C exchange; however, how microbes respond to N addition remains uncertain. To better understand this process, the experiment was performed in the Castanopsis kawakamii Hayata Nature Reserve, in the subtropical zone of China. Treatments involved applying different levels of N (0, 40, and 80 kg ha−2 year−1) over a three-year period (January 2013–December 2015) to explore how soil physicochemical properties, respiration rate, phospholipid fatty acid (PLFA) concentration, and solid state 13C nuclear magnetic resonance responded to various N addition rate. Results showed that high levels of N addition significantly decreased soil respiration; however, low levels of N addition significantly increased soil respiration. High levels of N reduced soil pH and enhanced P and C co-limitation of microorganisms, leading to significant reductions in total PLFA and changes in the structure of microbial communities. Significant linear relationships were observed between annual cumulative respiration and the concentration of microbial biomass (total PLFA, gram-positive bacteria (G+), gram-negative bacteria (G−), total bacteria, and fungi) and the microbial community structure (G+: G− ratio). Taken together, increasing N deposition changed microbial community structure and suppressed microbial biomass, ultimately leading to recalcitrant C accumulation and soil C emissions decrease in subtropical forest.


2010 ◽  
Vol 7 (3) ◽  
pp. 1133-1142 ◽  
Author(s):  
K. Tamai

Abstract. Soil respiration rates were measured along different parts of a slope in (a) an evergreen forest with common brown forest soil and (b) a deciduous forest with immature soil. The effects of soil temperature, soil moisture and soil properties were estimated individually, and the magnitudes of these effects in the deciduous and evergreen forests were compared. In the evergreen forest with common brown forest soil, soil properties had the greatest effect on soil respiration rates, followed by soil moisture and soil temperature. These results may be explained by the fact that different soil properties matured within different environments. It can be argued that the low soil respiration rates in the low parts of the slope in the evergreen forest resulted from soil properties and not from wet soil conditions. In the deciduous forest, soil respiration rates were more strongly affected by soil moisture and soil temperature than by soil properties. These effects were likely due to the immaturity of the forest soil.


2021 ◽  
Author(s):  
Anna Walkiewicz ◽  
Piotr Bulak ◽  
Mohammad Ibrahim Khalil ◽  
Bart Kruijt ◽  
Pia Gottschalk ◽  
...  

<p>Forests play a key role in the global carbon (C) balance. On the one hand, a large amount of C is sequestered in soils, and on the other hand, the forest soils are also a significant source of carbon dioxide (CO<sub>2</sub>). Soil respiration includes anaerobic and aerobic microbial respiration, and root respiration which may contribute even more that half of the total soil respiration. Assessment of the contribution of forest soils to CO<sub>2</sub> emissions, in addition to C sequestration, is worth special attention in the context of increasing climate change. To address this field experiments were carried out to assess the CO<sub>2</sub> fluxes of 10 different forest soil types with different tree species (deciduous, coniferous, and mixed) in Poland (using static chamber method). The highest CO<sub>2</sub> emissions were observed for a silty soil under the youngest deciduous forest (12 y.) with a  daily average of 1.66 ± 0.7 g CO<sub>2</sub> m<sup>-2</sup> d<sup>-1</sup>. The lowest daily mean CO<sub>2</sub> flux was associated with a sandy soil in a mature stand of a predominantly coniferous forest (0.87 ± 0.3 g CO<sub>2</sub> m<sup>-2</sup> d<sup>-1</sup>). Annual averages were in the range 3.21 t C ha<sup>-1</sup> to 6.06 t C ha<sup>-1</sup> for a mature and young forest, respectively. The main factor causing differences in CO<sub>2</sub> emissions could have been the contribution of both trees and soil properties to hydrological conditions. The young forest was covered with trees with a lower root system forest and the young trees could have a lower demand for water resulting in a higher soil moisture content than in a mature forest soil. Different CO<sub>2</sub> fluxes could be also a result of a higher water storage capacity in silty soil in the young forest than that of a sandy soil under mature stand. In addition to water supply, the activity of soil microorganisms is also regulated by C availability which was about 30% lower in sandy soil than in silty soil. The two-yearly measurements showed seasonal variations in CO<sub>2</sub> fluxes depending on the soil type, age and tree species. Regardless of the characteristics of the forest being studied, the highest CO<sub>2</sub> emissions occurred in the summer or spring and the lowest CO<sub>2</sub> emissions were found  in winter as a result of a strong influence of temperature on the biological processes under investigation. The observed seasonality in CO<sub>2</sub> emission may be attributed to changes in soil moisture during the measurement periods since soil water content regulates microbial activity and gaseous diffusion. Statistical analyses, however, imply that temperature could have  a stronger control over CO<sub>2</sub> emissions from the soils studied than soil moisture.</p><p>Research was conducted under the project financed by Polish National Centre for Research and Development within of ERA-NET CO-FUND ERA-GAS Programme (ERA-GAS/I/GHG-MANAGE/01/2018) “GHG-Manage”.</p>


2009 ◽  
Vol 6 (6) ◽  
pp. 10935-10961
Author(s):  
K. Tamai

Abstract. Soil respiration rates were measured along different parts of a slope in (a) an evergreen forest with mature soil and (b) a deciduous forest with immature soil. The effects of soil temperature, soil moisture, and soil properties on soil respiration rates were estimated individually, and the magnitudes of these effects were compared between the deciduous and evergreen forests. In the evergreen forest with mature soil, soil properties had the greatest effect on soil respiration rates, followed by soil moisture and soil temperature. These results may be explained by different properties of soils that matured under different environments. Thus, we argue that the low soil respiration rates in Plot L of the evergreen forest resulted from soil properties and not from wet soil conditions. In the deciduous forest, soil respiration rates were more strongly affected by soil moisture and soil temperature than by soil properties, which were likely due to the immaturity of the forest soil.


Nature ◽  
2006 ◽  
Vol 439 (7077) ◽  
pp. 711-714 ◽  
Author(s):  
Russell K. Monson ◽  
David L. Lipson ◽  
Sean P. Burns ◽  
Andrew A. Turnipseed ◽  
Anthony C. Delany ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
pp. 58
Author(s):  
Rachele Venanzi ◽  
Loredana Barbona ◽  
Francesco Latterini ◽  
Rodolfo Picchio

The aim of this work was to assess the possible impacts on the forest soil and stand due to silvicultural treatment and forest operations in a beech high forest. Even aged beech forests (Fagus sylvatica L.) in the Municipality of Cappadocia (L’Aquila) and in the Municipality of Vallepietra (Roma) were analyzed. The analysis of the soil and stand were performed in order to assess the effects attributable to applied silviculture and forest logging. Two different logging methodologies (in particular for the extraction) were applied: mules were used in the areas with greater slopes and with obstacles, while for the areas with better accessibility, mechanical means were used, in this case tractors. In detail, the main objective was to assess the disturbance on the ground and on the stand, generated by the two different levels of mechanization. In addition, it was also interesting to understand the possible effect on the soil and specifically on the partial uncovering where part of the tree canopy was removed. Only through an accurate cross-analysis of the studied parameters and indices could the anthropogenic impacts on the soil and stand due to forest operations be highlighted according to the different logging methodologies applied. The main results showed that the disturbances caused to the soil and stand were essentially caused in the bunching and extraction operations. The importance of avoiding or limiting the continuous passage of vehicles and animals on forest soil clearly emerges, especially in conditions of high soil moisture. It is also important to use correct technologies that are adequate for the specific environmental characteristics and the work plan. Finally, it can be said that there was no difference in the disturbance caused by the two logging methods when compared. Substantial differences in terms of improvement can be defined when comparing the findings of this study with other research studies. This can be done by applying a different type of mechanization with a different logging system.


2016 ◽  
Vol 210 (4) ◽  
pp. 1369-1381 ◽  
Author(s):  
Vendula Brabcová ◽  
Monika Nováková ◽  
Anna Davidová ◽  
Petr Baldrian

Sign in / Sign up

Export Citation Format

Share Document