Nonlinear consolidation analysis of soft soil with vertical drains considering well resistance and smear effect under cyclic loadings

Author(s):  
Pyol Kim ◽  
Tong-Chol Kim ◽  
Yong-Gun Kim ◽  
Hak-Bom Myong ◽  
Kwang-Su Jon ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Zhongyu Liu ◽  
Penglu Cui ◽  
Jiachao Zhang ◽  
Yangyang Xia

To further investigate the rheological consolidation mechanism of soft soil ground with vertical drains, the fractional-derivative Merchant model (FDMM) is introduced to describe the viscoelastic behavior of saturated clay around the vertical drains, and the flow model with the non-Newtonian index is employed to describe the non-Darcian flow in the process of rheological consolidation. Accordingly, the governing partial differential equation of the ideal sand-drained ground with coupled radial-vertical flow is obtained under the assumption that the vertical strains develop freely. Then, the numerical solution to the consolidation system is conducted using the implicit finite difference method. The validity of this method is verified by comparing the results of Barron’s consolidation theory. Furthermore, the effects of the parameters of non-Darcian flow and FDMM on the rheological consolidation of ground with vertical drains are illustrated and discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Pyol Kim ◽  
Hyong-Sik Kim ◽  
Yong-Gun Kim ◽  
Chung-Hyok Paek ◽  
Song-Nam Oh ◽  
...  

This paper presents analytical solutions for nonlinear radial consolidation of soft soil with vertical drains under various cyclic loadings. By considering the nonlinear variations of compressibility and permeability expressed by the logarithm relations (e−log σ′ and e−log kh), the governing equation for nonlinear radial consolidation of the soil under equal strain and time-dependent loading is established. The analytical solutions are derived for nonlinear radial consolidation under haversine cyclic loading, trapezoidal cyclic loading, rectangular cyclic loading, and triangular cyclic loading. The presented solution is verified through the degeneration into the existing solutions for nonlinear radial consolidation under constant and ramp loadings, which shows the solution proposed in this paper is more general for nonlinear radial consolidation under time-dependent loading. The nonlinear radial consolidation behavior of the soil with vertical drains subjected to various cyclic loadings is investigated using the solutions developed. The proposed solutions can be effectively utilized in the analysis of nonlinear radial consolidation under various cyclic loadings.


2018 ◽  
Vol 195 ◽  
pp. 03014
Author(s):  
Siswoko Adi Saputro ◽  
Agus Setyo Muntohar ◽  
Hung Jiun Liao

Excessive settlement due to consolidation can cause damage to the structure’s rest on soft soil. The settlement takes place in relatively longer. The preloading and prefabricated vertical drain (PVD) is often applied to accelerate the primary settlement. The issue in this research is the estimation of the settlement. The Asaoka method and the finite element method using PLAXIS-2D are used to estimate the final settlement of a PVD treated embankment. For the former, a complete record of the settlement was required; for the latter, some ground parameters are needed for the PLAXIS-2D analysis, such as the permeability of the soil. Because the installation process of PVD tends to influence the permeability of the in-situ soil around the PVD, the soil permeability after the installation of PVD needs to be adjusted. The numerical results were compared with actual settlement data to find out the best-fit input parameters (i.e. soil permeability) of the actual data. It was found that the best-fit soil permeability (k) used in the numerical study was about one-half of the k value determined from the laboratory test. The Root Mean Square Deviation shows that the settlement predicted by the numerical analysis has approximately 30% of the actual settlement.


Sign in / Sign up

Export Citation Format

Share Document