scholarly journals Evaluation of common mixing models for calculating bulk thermal conductivity of sedimentary rocks: Correction charts and new conversion equations

Geothermics ◽  
2013 ◽  
Vol 47 ◽  
pp. 40-52 ◽  
Author(s):  
Sven Fuchs ◽  
Felina Schütz ◽  
Hans-Jürgen Förster ◽  
Andrea Förster
Author(s):  
Vadim Gektin ◽  
Sai Ankireddi ◽  
Jim Jones ◽  
Stan Pecavar ◽  
Paul Hundt

Thermal Interface Materials (TIMs) are used as thermally conducting media to carry away the heat dissipated by an energy source (e.g. active circuitry on a silicon die). Thermal properties of these interface materials, specified on vendor datasheets, are obtained under conditions that rarely, if at all, represent real life environment. As such, they do not accurately portray the material thermal performance during a field operation. Furthermore, a thermal engineer has no a priori knowledge of how large, in addition to the bulk thermal resistance, the interface contact resistances are, and, hence, how much each influences the cooling strategy. In view of these issues, there exists a need for these materials/interfaces to be characterized experimentally through a series of controlled tests before starting on a thermal design. In this study we present one such characterization for a candidate thermal interface material used in an electronic cooling application. In a controlled test environment, package junction-to-case, Rjc, resistance measurements were obtained for various bondline thicknesses (BLTs) of an interface material over a range of die sizes. These measurements were then curve-fitted to obtain numerical models for the measured thermal resistance for a given die size. Based on the BLT and the associated thermal resistance, the bulk thermal conductivity of the TIM and the interface contact resistance were determined, using the approach described in the paper. The results of this study permit sensitivity analyses of BLT and its effect on thermal performance for future applications, and provide the ability to extrapolate the results obtained for the given die size to a different die size. The suggested methodology presents a readily adaptable approach for the characterization of TIMs and interface/contact resistances in the industry.


2020 ◽  
Vol 32 ◽  
pp. 100996 ◽  
Author(s):  
Jacob C. Simmons ◽  
Xiaobo Chen ◽  
Arad Azizi ◽  
Matthias A. Daeumer ◽  
Peter Y. Zavalij ◽  
...  

2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Pauline Harlé ◽  
Alexandra R. L. Kushnir ◽  
Coralie Aichholzer ◽  
Michael J. Heap ◽  
Régis Hehn ◽  
...  

AbstractThe Upper Rhine Graben (URG) has been extensively studied for geothermal exploitation over the past decades. Yet, the thermal conductivity of the sedimentary cover is still poorly constrained, limiting our ability to provide robust heat flow density estimates. To improve our understanding of heat flow density in the URG, we present a new large thermal conductivity database for sedimentary rocks collected at outcrops in the area including measurements on (1) dry rocks at ambient temperature (dry); (2) dry rocks at high temperature (hot) and (3) water-saturated rocks at ambient temperature (wet). These measurements, covering the various lithologies composing the sedimentary sequence, are associated with equilibrium-temperature profiles measured in the Soultz-sous-Forêts wells and in the GRT-1 borehole (Rittershoffen) (all in France). Heat flow density values considering the various experimental thermal conductivity conditions were obtained for different depth intervals in the wells along with average values for the whole boreholes. The results agree with the previous heat flow density estimates based on dry rocks but more importantly highlight that accounting for the effect of temperature and water saturation of the formations is crucial to providing accurate heat flow density estimates in a sedimentary basin. For Soultz-sous-Forêts, we calculate average conductive heat flow density to be 127 mW/m2 when considering hot rocks and 184 mW/m2 for wet rocks. Heat flow density in the GRT-1 well is estimated at 109 and 164 mW/m2 for hot and wet rocks, respectively. Results from the Rittershoffen well suggest that heat flow density is nearly constant with depth, contrary to the observations for the Soultz-sous-Forêts site. Our results show a positive heat flow density anomaly in the Jurassic formations, which could be explained by a combined effect of a higher radiogenic heat production in the Jurassic sediments and thermal disturbance caused by the presence of the major faults close to the Soultz-sous-Forêts geothermal site. Although additional data are required to improve these estimates and our understanding of the thermal processes, we consider the heat flow densities estimated herein as the most reliable currently available for the URG.


1996 ◽  
Vol 20 (3) ◽  
pp. 177-189 ◽  
Author(s):  
S. D. DESHPANDE ◽  
S. BAL ◽  
T. P. OJHA

2007 ◽  
Vol 553 ◽  
pp. 171-189 ◽  
Author(s):  
Antonio C.M. Sousa ◽  
Fangming Jiang

Heat and mass transfer and fluid flow in porous media are usually characterized by, or associated with, the effective thermal conductivity, the effective mass diffusivity and the permeability, respectively. All these macroscopic quantities are conceptually established on a phenomenological “equivalence” basis. They may contain the influence of porous micro-structures upon the corresponding diffusive process; however, the detailed nature inside the porous medium is lumped and neglected. Pore scale numerical modelling has the potential of providing adequate meso-/micro- scale insight into the transport process in porous medium, as well as obtaining macroscopic properties, which can encompass the complex pore-structure details. Modelling heat/mass transfer and fluid flow in complicated porous micro-structures presents a major challenge to numerical methods due to their multiscale and multiphysics nature. A relatively-novel numerical technique - the meshless Lagrangian-based Smoothed Particle Hydrodynamics (SPH) method is thought to be capable of making a significant contribution to this research field. This work deals primarily with the SPH modelling of heat conduction and fluid flow in 2-D isotropic porous media. The porous matrix is formed by randomly including a different component into a base component. Various pore-structures are realized by changing the inclusion shape/size, or the relative arrangement condition between inclusions. Pore-scale heat transfer and fluid flow streams are visualized, and both heat transfer and fluid flow always follow, as expected, the paths of least resistance through the porous structures. In what concerns the effective thermal conductivity, for the porous media with the base component of larger bulk thermal conductivity, the “flexible” EMT model, which can accommodate, to some extent, the influence from the porous micro-structures on the effective thermal conductivity by adjusting the so-called flexible factor ff, gives effective thermal conductivities agreeable to the SPH predictions across the whole composition range if ff is taken to be ~ 4.5; the effective thermal conductivity shows a weak dependence on the inclusion shape/size and the relative arrangement condition between inclusions; however, for porous media with dispersed inclusions, which component has larger bulk thermal conductivity presents a strong effect upon the effective thermal conductivity. The SPH fluid flow simulation results confirm the macroscopic Darcy’s law to be valid only in the creeping flow regime; the dimensionless permeability (normalized by the squared characteristic dimension of the inclusions) is found to have an exponential dependence on the porosity within the intermediate porosity range, and the derived dimensionless permeability /""porosity relation is found to have only a minor dependence on either the relative arrangement condition between inclusions or the inclusion shape/area.


Sign in / Sign up

Export Citation Format

Share Document