Thermal Properties of Evaporitic Rocks and their Geothermal Effects on the Kuqa Foreland Basin, Northwest China

Geothermics ◽  
2020 ◽  
Vol 88 ◽  
pp. 101898
Author(s):  
Xianglan Li ◽  
Li Cai ◽  
Shaowen Liu ◽  
Xudong Li
2020 ◽  
Author(s):  
Shaowen Liu ◽  
Liangshu Wang

<p>Evaporitic salt is prevailed in marine sedimentary basins, and the discovered hydrocarbon reservoirs are generally associated with salt structures in the world; accordingly salt structures have attracted much attention from academic and industry during the past decade. Tarim Basin that locates in northwest China, is the largest marine sedimentary basin in China with great hydrocarbon resources potential. Previous studies of salt structures in this basin mainly focus on its strong sealing capacity and structural traps created by salt structures. However, besides its extreme impermeability and low viscosity, rock salt has another unique thermal properties, featured by a large thermal conductivity as high as 5~6 W/(m.K), usually 2~3 times greater than that of other common sedimentary rocks, but a relatively low radiogenic heat production. This strong contrast in thermal properties could change the evolving thermal regime and associated thermal history of the source rocks around salt bodies, but has not been understood well. Herein based on the theoretical models and interpreted salt bearing seismic profiles from the Kuqa Foreland Basin, northern Tarim Basin, we use the 2D finite element numerical experiments to investigate the impacts of salt structures on basin geothermal regime and associated hydrocarbon thermal evolution. Our results show that, owing to its high efficiency in heat conduction, the salt rocks would result in obviously positive temperature anomalies (3~13%) above the salt body and negative temperature anomalies (11~35%) in the subsalt, enhancing and restraining the thermal maturation of source rocks above and below the salt body, respectively. The amplitude and extent of geothermal effects of salt structures depend on the thermal conductivity, geometry, thickness and burial depth of the salt bodies. The thermally affected area around the salt body can be 2 time of salt radius laterally and 2~3 times of salt thickness vertically. Salt structures in the Kuqa Foreland Basin can prominently cool the subsalt formation temperature and accordingly reduce the thermal maturity (Ro) of Jurassic source rocks as much as 18%, enabling the source rocks to be still of gas generation other than over-mature stage as expected previously, which is favor for deep hydrocarbon preservation below salt. In particular, salt structures in the west and east Kuqa Foreland Basin show strong differences in their thickness, geometric pattern, burial depth and composition, the thermal effects of salt structures on thermal maturation of subsalt source rocks should differ accordingly, which is supported by the observed tempo-spatial variation of Ro for Jurassic source rocks in this basin. Finally, we propose that the geothermal effects of salt structures will be of great importance in the deep hydrocarbon resources potential assessment and exploration in marine sedimentary basins in China.</p>


1994 ◽  
Vol 36 (12) ◽  
pp. 1151-1158 ◽  
Author(s):  
Lu Huafu ◽  
David G. Howell ◽  
Jia Dong ◽  
Cai Dongsheng ◽  
Wu Shimin ◽  
...  

2019 ◽  
Vol 27 (1) ◽  
pp. 57-78
Author(s):  
D. V. Alexeiev ◽  
Yu. S. Biske ◽  
A. V. Djenchuraeva ◽  
B. Wang ◽  
O. L. Kossovaya ◽  
...  

The field revision of the Carboniferous and Lower Permian stratigraphy of the northern Bogdashan (South Junggar, Northwest China) shows that the Lower to Middle Carboniferous island arc volcanic rocks, widely developed in this region, are overlapped everywhere by carbonate and terrigenous-carbonate sediments, containing occasional lava flows and overlain up the section by thick terrigenous series practically devoid of volcanic rocks. The deposition of limestone occurred at the stage of dying off of a volcanic arc, and the question of their age is of fundamental importance for dating this event. Carbonates are represented by facies of lagoons, shoals, and bioherms that formed on the leveled surface of the arc and on the slopes of the last active volcanoes. Bioherms are Waulsortian mounds and are mainly composed of algal limestones and carbonate mud. There are no framestones composed of corals and sponges (chaetetids) typical of the tropical zone. The facies of shallow crinoid-fusulinid limestones typical of the adjacent territories of the Southern Tien Shan and Tarim are poorly represented. Paleogeographically, the position of bioherms corresponds to the northern boundary of the realm of Pennsylvanian reefs. On the basis of foraminifers, brachiopods, and corals, the age of carbonates is early Moscovian (ca. 315–310 Ma). Cessation of island-arc volcanism, followed by the accumulation of limestone in Bogdashan, occurred sub-synchronously with formation of the West Junggar (Bayingou) suture and may reflect docking of the Bogdashan arc to the Yili active margin of the Kazakhstan continent. Further subsidence of Bogdashan and adjacent regions of the Junggar and Turfan basins, which was somewhat slower at the end of the Carboniferous and more intense in the Early and Middle Permian, may reflect the development of the foreland basin that formed along the northern flank of the Tien Shan orogen. Marine facies were locally preserved in this basin until the Artinskian (ca. 285 Ma), and later the Junggar and Turfan basins lost connection to the ocean and developed in continental environments.


2001 ◽  
Vol 44 (S1) ◽  
pp. 175-180 ◽  
Author(s):  
Chunfang Cai ◽  
Jiyang Wang ◽  
Fangang Zeng ◽  
Hong He

Sign in / Sign up

Export Citation Format

Share Document