Quantifying the Effects of Salt Structures on Source Rocks Thermal Evolution of the Marine Sedimentary Basins

Author(s):  
Shaowen Liu ◽  
Liangshu Wang

<p>Evaporitic salt is prevailed in marine sedimentary basins, and the discovered hydrocarbon reservoirs are generally associated with salt structures in the world; accordingly salt structures have attracted much attention from academic and industry during the past decade. Tarim Basin that locates in northwest China, is the largest marine sedimentary basin in China with great hydrocarbon resources potential. Previous studies of salt structures in this basin mainly focus on its strong sealing capacity and structural traps created by salt structures. However, besides its extreme impermeability and low viscosity, rock salt has another unique thermal properties, featured by a large thermal conductivity as high as 5~6 W/(m.K), usually 2~3 times greater than that of other common sedimentary rocks, but a relatively low radiogenic heat production. This strong contrast in thermal properties could change the evolving thermal regime and associated thermal history of the source rocks around salt bodies, but has not been understood well. Herein based on the theoretical models and interpreted salt bearing seismic profiles from the Kuqa Foreland Basin, northern Tarim Basin, we use the 2D finite element numerical experiments to investigate the impacts of salt structures on basin geothermal regime and associated hydrocarbon thermal evolution. Our results show that, owing to its high efficiency in heat conduction, the salt rocks would result in obviously positive temperature anomalies (3~13%) above the salt body and negative temperature anomalies (11~35%) in the subsalt, enhancing and restraining the thermal maturation of source rocks above and below the salt body, respectively. The amplitude and extent of geothermal effects of salt structures depend on the thermal conductivity, geometry, thickness and burial depth of the salt bodies. The thermally affected area around the salt body can be 2 time of salt radius laterally and 2~3 times of salt thickness vertically. Salt structures in the Kuqa Foreland Basin can prominently cool the subsalt formation temperature and accordingly reduce the thermal maturity (Ro) of Jurassic source rocks as much as 18%, enabling the source rocks to be still of gas generation other than over-mature stage as expected previously, which is favor for deep hydrocarbon preservation below salt. In particular, salt structures in the west and east Kuqa Foreland Basin show strong differences in their thickness, geometric pattern, burial depth and composition, the thermal effects of salt structures on thermal maturation of subsalt source rocks should differ accordingly, which is supported by the observed tempo-spatial variation of Ro for Jurassic source rocks in this basin. Finally, we propose that the geothermal effects of salt structures will be of great importance in the deep hydrocarbon resources potential assessment and exploration in marine sedimentary basins in China.</p>

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Chengfu Lyu ◽  
Xixin Wang ◽  
Xuesong Lu ◽  
Qianshan Zhou ◽  
Ying Zhang ◽  
...  

The Kuqa Basin is a typical foreland basin in northwest China, characterized by compressive foreland fold-and-thrust belts and a regionally distributed huge salt layer. A large number of overthrust faults, fault-related folds, and salt-related structures are formed on the thrust belt due to strong compression and structural deformation, causing difficulty in simulation of the basin. In this study, modeling of the thermal history of the complicated compressional structural profiles in the Kuqa foreland basin was successfully conducted based on the advanced “Block” function introduced by the IES PetroMod software and the latest geological interpretation results. In contrast to methods used in previous studies, our method comprehensively evaluates the influence of overthrusting, a large thick salt layer with low thermal conductivity, fast deposition, or denudation on the thermal evolution history. The results demonstrate that the hydrocarbon generation center of the Kuqa foreland basin is in the deep layers of the Kelasu thrust belt and not in the Baicheng Sag center, which is buried the deepest. A surprising result was drawn about the center of hydrocarbon generation in the Kuqa foreland basin, which, although not the deepest in Baicheng Sag, is the deepest part of the Kelasu thrust Belt. In terms of the maturity of the source rock, there are obvious temporal and spatial differences between the different structural belts in the Kuqa foreland basin, such as the early maturation of source rocks and the curbing of uplift and hydrocarbon generation in the piedmont zone. In the Kelasu thrust belt, the source rock made an early development into the low mature-mature stage and subsequently rapidly grew into a high-over mature stage. In contrast, the source rock was immature at an early stage and subsequently grew into a low mature-mature stage in the Baicheng Sag–South slope belt. The time sequence of the thermal evolution of source rocks and structural trap formation and their matching determines the different accumulation processes and oil and gas compositions in the different structural belts of the Kuqa foreland basin. The matching of the multistage tectonic activity and hydrocarbon generation determines the characteristics of the multistage oil and gas accumulation, with the late accumulation being dominant. The effective stacking of the gas generation center, subsalt structural traps, reservoir facies of fine quality, and huge, thick salt caprocks creates uniquely favorable geological conditions for gas enrichment in the Kelasu foreland thrust belt.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1101
Author(s):  
Tian Dong ◽  
Yuan Gao ◽  
He Huang ◽  
Xing Tian ◽  
Qian Yang ◽  
...  

The Songliao Basin in northeastern China is one of the largest and longest-lived Cretaceous sedimentary basins enriched in petroleum and geothermal resources worldwide. Although the modern Songliao Basin has a high geothermal gradient, the geological thermal history of the basin has not been well constrained. The SK-2 drilling program, as the second stage of the International Continental Drilling Project of Cretaceous Songliao Basin, is for recovering extensive Early Cretaceous terrestrial strata and providing valuable materials for decoding the mineralogical evolution and the paleoenvironmental changes. Here, we present whole-rock and clay mineralogical analysis on 72 core samples covering 3346–5705 m of the Shahezi Formation in the SK-2 borehole. The whole-rock minerals mainly include clay minerals, quartz, plagioclase, as well as some calcite, K-feldspar, siderite, and pyrite. The clay mineral assemblages include illite, chlorite, and illite–smectite interlayer minerals. Above 4500 m, clay minerals are dominated by illite and illite–smectite interlayers. Below 4500 m, more plagioclase, K-feldspar, and calcite are present, while illite–smectite interlayers are completely replaced by illite. The whole-rock and clay mineralogical evolution of the Shahezi Formation is primarily controlled by thermal diagenesis, although paleoenvironmental change may act as a minor contribution. Combined with published data from the Upper Cretaceous in SK-1 cores, we infer that Cretaceous greenhouse climatic and environmental changes left fingerprints on whole-rock and clay mineralogical assemblages and that the Songliao Basin reached a maximum burial depth and a peak of thermal evolution at the end of the Cretaceous.


AAPG Bulletin ◽  
2012 ◽  
Vol 96 (5) ◽  
pp. 789-821 ◽  
Author(s):  
Nansheng Qiu ◽  
Jian Chang ◽  
Yinhui Zuo ◽  
Jiyang Wang ◽  
Huili Li

1994 ◽  
Vol 36 (12) ◽  
pp. 1151-1158 ◽  
Author(s):  
Lu Huafu ◽  
David G. Howell ◽  
Jia Dong ◽  
Cai Dongsheng ◽  
Wu Shimin ◽  
...  

2019 ◽  
Vol 7 (3) ◽  
pp. T657-T669
Author(s):  
Jinqi Qiao ◽  
Luofu Liu ◽  
Baojian Shen ◽  
Xiaoqing Shang

Although the Cambrian marine shale in the Tarim Basin is usually considered to be the source rocks for overlying conventional reservoirs, its unconventional shale-gas potential has not yet been evaluated. To indicate the unconventional resource play potential and highlight more favorable zones, we conducted a comprehensive lithologic, petrophysical, and geochemical analysis of 228 drill core samples from 14 wells and 167 outcrop samples from eight geologic sections in the basin. The results indicate that the Cambrian marine shale was deposited in basinal and slope environments dominated by shale and siliceous shale. The average total organic carbon (TOC) content of the Є1xd (Xidashan) and Є2m (Moheershan) Formations ranges from 0.5% to 2.5%, and that of the Є1y (Yuertusi) Formation ranges from 1.0% to 7.0%. Phytoplankton is dominant in the Є1xd and Є2m Formations, whereas benthic algae are more prevalent in the Є1y Formation. The organic matter ranges in maturity from high to postmature. The shale consists of abundant meso- and macropores. The mineral matter is mostly composed of quartz ([Formula: see text] in most samples) followed by carbonate minerals, with minor contributions made by clay minerals ([Formula: see text]). The analysis of methane adsorption isotherm indicates a positive correlation between the gas and TOC content and a negative correlation between the gas content and burial depth implying the good adsorption capacity of the shale-gas play. Resource estimation of the Middle-Lower Cambrian indicates that the Yuli and Ruoqiang areas contain a potential [Formula: see text] of shale gas, and they are the most favorable zones for further exploitation.


Sign in / Sign up

Export Citation Format

Share Document