iCHASM, a flexible land-surface model that incorporates stable water isotopes

2006 ◽  
Vol 51 (1-2) ◽  
pp. 121-130 ◽  
Author(s):  
M.J. Fischer
2006 ◽  
Vol 51 (1-2) ◽  
pp. 90-107 ◽  
Author(s):  
Kei Yoshimura ◽  
Shin Miyazaki ◽  
Shinjiro Kanae ◽  
Taikan Oki

2012 ◽  
Vol 5 (4) ◽  
pp. 3375-3418
Author(s):  
B. Haese ◽  
M. Werner ◽  
G. Lohmann

Abstract. In this study we present first results of a new model development, ECHAM5-JSBACH-wiso, where we have incorporated the stable water isotopes H218O and HDO as tracers in the hydrological cycle of the coupled atmosphere–land surface model ECHAM5-JSBACH. The ECHAM5-JSBACH-wiso model was run under present-day climate conditions at two different resolutions (T31L19, T63L31). A comparison between ECHAM5-JSBACH-wiso and ECHAM5-wiso shows that the coupling has a strong impact on the simulated temperature and soil wetness. Caused by these changes of temperature and the hydrological cycle, the δ18O in precipitation also shows variations from −4.5‰ up to 4.5‰. One of the clearest anomalies is shown over North-East Asia where, depending on an increase of temperature, the δ18O in precipitation increases as well. In order to analyze the sensitivity of the fractionation processes over land, we compare a set of simulations with various implementations of water isotope fractionation processes over the land surface. The simulations allow us to distinguish between no fractionation, fractionation included in the evaporation flux (from bare soil) and also fractionation included in both evaporation and transpiration (from water transport through plants) fluxes. The simulated δ18O and δD in precipitation of these setups generally fit well with the observations and the best agreement between observation and simulation is given in the case where no fractionation over land surface is assumed.


2013 ◽  
Vol 6 (5) ◽  
pp. 1463-1480 ◽  
Author(s):  
B. Haese ◽  
M. Werner ◽  
G. Lohmann

Abstract. In this study we present first results of a new model development, ECHAM5-JSBACH-wiso, where we have incorporated the stable water isotopes H218O and HDO as tracers in the hydrological cycle of the coupled atmosphere–land surface model ECHAM5-JSBACH. The ECHAM5-JSBACH-wiso model was run under present-day climate conditions at two different resolutions (T31L19, T63L31). A comparison between ECHAM5-JSBACH-wiso and ECHAM5-wiso shows that the coupling has a strong impact on the simulated temperature and soil wetness. Caused by these changes of temperature and the hydrological cycle, the δ18O in precipitation also shows variations from −4‰ up to 4‰. One of the strongest anomalies is shown over northeast Asia where, due to an increase of temperature, the δ18O in precipitation increases as well. In order to analyze the sensitivity of the fractionation processes over land, we compare a set of simulations with various implementations of these processes over the land surface. The simulations allow us to distinguish between no fractionation, fractionation included in the evaporation flux (from bare soil) and also fractionation included in both evaporation and transpiration (from water transport through plants) fluxes. While the isotopic composition of the soil water may change for δ18O by up to +8&permil:, the simulated δ18O in precipitation shows only slight differences on the order of ±1‰. The simulated isotopic composition of precipitation fits well with the available observations from the GNIP (Global Network of Isotopes in Precipitation) database.


2020 ◽  
pp. 052
Author(s):  
Jean-Christophe Calvet ◽  
Jean-Louis Champeaux

Cet article présente les différentes étapes des développements réalisés au CNRM des années 1990 à nos jours pour spatialiser à diverses échelles les simulations du modèle Isba des surfaces terrestres. Une attention particulière est portée sur l'intégration, dans le modèle, de données satellitaires permettant de caractériser la végétation. Deux façons complémentaires d'introduire de l'information géographique dans Isba sont présentées : cartographie de paramètres statiques et intégration au fil de l'eau dans le modèle de variables observables depuis l'espace. This paper presents successive steps in developments made at CNRM from the 1990s to the present-day in order to spatialize the simulations of the Isba land surface model at various scales. The focus is on the integration in the model of satellite data informative about vegetation. Two complementary ways to integrate geographic information in Isba are presented: mapping of static model parameters and sequential assimilation of variables observable from space.


Sign in / Sign up

Export Citation Format

Share Document