scholarly journals Sulfonamides Repress Cell Division in the Root Apical Meristem by Inhibiting Folates Synthesis

Author(s):  
Guanping Feng ◽  
Wenying Zou ◽  
Yihui Zhong
2021 ◽  
Vol 22 (11) ◽  
pp. 5739
Author(s):  
Joo Yeol Kim ◽  
Hyo-Jun Lee ◽  
Jin A Kim ◽  
Mi-Jeong Jeong

Sound waves affect plants at the biochemical, physical, and genetic levels. However, the mechanisms by which plants respond to sound waves are largely unknown. Therefore, the aim of this study was to examine the effect of sound waves on Arabidopsis thaliana growth. The results of the study showed that Arabidopsis seeds exposed to sound waves (100 and 100 + 9k Hz) for 15 h per day for 3 day had significantly longer root growth than that in the control group. The root length and cell number in the root apical meristem were significantly affected by sound waves. Furthermore, genes involved in cell division were upregulated in seedlings exposed to sound waves. Root development was affected by the concentration and activity of some phytohormones, including cytokinin and auxin. Analysis of the expression levels of genes regulating cytokinin and auxin biosynthesis and signaling showed that cytokinin and ethylene signaling genes were downregulated, while auxin signaling and biosynthesis genes were upregulated in Arabidopsis exposed to sound waves. Additionally, the cytokinin and auxin concentrations of the roots of Arabidopsis plants increased and decreased, respectively, after exposure to sound waves. Our findings suggest that sound waves are potential agricultural tools for improving crop growth performance.


2015 ◽  
Vol 25 (23) ◽  
pp. 3144-3150 ◽  
Author(s):  
Hirofumi Katayama ◽  
Kuninori Iwamoto ◽  
Yuka Kariya ◽  
Tomohiro Asakawa ◽  
Toshiyuki Kan ◽  
...  

2013 ◽  
Vol 23 (20) ◽  
pp. 1979-1989 ◽  
Author(s):  
Wenjing Zhang ◽  
Ranjan Swarup ◽  
Malcolm Bennett ◽  
G. Eric Schaller ◽  
Joseph J. Kieber

2014 ◽  
Vol 24 (17) ◽  
pp. 2053-2058 ◽  
Author(s):  
Kyoko Ohashi-Ito ◽  
Maria Saegusa ◽  
Kuninori Iwamoto ◽  
Yoshihisa Oda ◽  
Hirofumi Katayama ◽  
...  

2011 ◽  
Vol 45 (1) ◽  
pp. 18-26 ◽  
Author(s):  
E. A. Kravets ◽  
A. N. Mikheev ◽  
L. G. Ovsyannikova ◽  
D. M. Grodzinsky

Author(s):  
Marek Šírl ◽  
Tereza Šnajdrová ◽  
Dolores Gutiérrez-Alanís ◽  
Joseph G. Dubrovsky ◽  
Jean Phillipe Vielle-Calzada ◽  
...  

The AT-HOOK MOTIF NUCLEAR LOCALIZED PROTEIN (AHL) gene family encodes embryophyte-specific nuclear proteins with DNA binding activity. They modulate gene expression and affect various developmental processes in plants. We identify AHL18 (At3G60870) as a developmental modulator of root system architecture and growth. AHL18 regulates the length of the proliferation domain and number of dividing cells in the root apical meristem and thereby, cell production. Both primary root growth and lateral root development respond according to AHL18 transcription level. The ahl18 knock-out plants show reduced root systems due to a shorter primary root and a lower number of lateral roots. This change results from a higher number of arrested and non-developing lateral root primordia (LRP) rather than from decreased initiation. Overexpression of AHL18 results in a more extensive root system, longer primary roots, and increased density of lateral root initiation events. Formation of lateral roots is affected during the initiation of LRP and later development. AHL18 regulate root apical meristem activity, lateral root initiation and emergence, which is in accord with localization of its expression.


Science ◽  
2021 ◽  
Vol 371 (6536) ◽  
pp. 1350-1355
Author(s):  
Weibing Yang ◽  
Sandra Cortijo ◽  
Niklas Korsbo ◽  
Pawel Roszak ◽  
Katharina Schiessl ◽  
...  

Mitogens trigger cell division in animals. In plants, cytokinins, a group of phytohormones derived from adenine, stimulate cell proliferation. Cytokinin signaling is initiated by membrane-associated histidine kinase receptors and transduced through a phosphorelay system. We show that in the Arabidopsis shoot apical meristem (SAM), cytokinin regulates cell division by promoting nuclear shuttling of Myb-domain protein 3R4 (MYB3R4), a transcription factor that activates mitotic gene expression. Newly synthesized MYB3R4 protein resides predominantly in the cytoplasm. At the G2-to-M transition, rapid nuclear accumulation of MYB3R4—consistent with an associated transient peak in cytokinin concentration—feeds a positive feedback loop involving importins and initiates a transcriptional cascade that drives mitosis and cytokinesis. An engineered nuclear-restricted MYB3R4 mimics the cytokinin effects of enhanced cell proliferation and meristem growth.


Sign in / Sign up

Export Citation Format

Share Document