Tolerance Induction in Neonatal Mice: Exhaustion of CD8 T Cells in Allogeneic Bone Marrow Tolerizing Inoculum Fails to Induce GVHD and Leads to Prolonged Donor Heart Graft Survival

2020 ◽  
Vol 39 (4) ◽  
pp. S468
Author(s):  
R.A. Bascom ◽  
K. Tao ◽  
L.J. West
Blood ◽  
1993 ◽  
Vol 82 (7) ◽  
pp. 2216-2223 ◽  
Author(s):  
RJ Soiffer ◽  
R Gonin ◽  
C Murray ◽  
MJ Robertson ◽  
K Cochran ◽  
...  

Graft-versus-host disease (GVHD) is a major cause of morbidity and mortality following allogeneic bone marrow transplantation (BMT). Because GVHD is frequently refractory to treatment, the early identification of high-risk patients could have significant clinical value. To identify such patients, we examined early immunologic recovery in 136 patients with hematologic malignancies who received anti-T12 (CD6)-purged allogeneic bone marrow over a 9-year period. The majority of patients received marrow from HLA-matched sibling donors after ablation with cyclophosphamide and total body irradiation. No patients received any immune suppressive medications for GVHD prophylaxis. The fraction and absolute numbers of peripheral blood lymphocytes (PBL) expressing the CD3, CD4, CD8, and CD56 surface antigens were determined weekly by immunofluorescence analysis in patients beginning 8 to 14 days (week 2) after marrow infusion. Results in patients who did or did not subsequently develop GVHD post-BMT were compared. Within 2 weeks of marrow infusion, patients who developed grades 2–4 GVHD had significantly higher percentages and absolute numbers of CD8+ T cells and a lower fraction of CD56+ natural killer (NK) cells than individuals who remained free of GVHD. Thirty-five percent of patients whose PBL were greater than 25% CD8+ in the second posttransplant week developed GVHD, compared with only 3% of patients who had < or = 25% CD8+ cells (odds ratio 37.8; 95% confidence interval [CI] 4.1 to 397). A subgroup of patients at very high risk for GVHD could be identified based on the combined frequency of CD8+ T cells and NK cells in blood. Seventy-five percent of patients with greater than 25% CD8+ cells and < or = 45% CD56+ cells during week 2 post-BMT developed GVHD, compared with only 11% of the remaining patients (odds ratio 24.9; 95% CI, 5.3 to 117.0). None of the 23 patients with both less than 25% CD8+ cells and greater than 45% CD56+ cells in the second posttransplant week developed grades 2–4 GVHD. Our findings indicate that CD8+ T cells play an important role in the pathogenesis of GVHD in humans. Analysis of immune reconstitution early after BMT is useful in predicting the onset of GVHD and can help direct the implementation of treatment strategies before the appearance of clinical manifestations. Such interventions may decrease the morbidity and mortality associated with allogeneic BMT and ultimately improve overall survival.


Blood ◽  
2008 ◽  
Vol 112 (4) ◽  
pp. 1522-1529 ◽  
Author(s):  
Kai Sun ◽  
Minghui Li ◽  
Thomas J. Sayers ◽  
Lisbeth A. Welniak ◽  
William J. Murphy

Abstract Dissociating graft-versus-tumor (GVT) effect from acute graft-versus-host disease (GVHD) still remains a great challenge in allogeneic bone marrow transplantation (allo-BMT). Bortezomib, a proteasome inhibitor, has shown impressive efficacy as a single agent in patients with hematologic malignancies but can result in toxicity when administered late after allogeneic transplantation in murine models of GVHD. In the current study, the effects of T-cell subsets and their associated cytokines on the efficacy of bortezomib in murine allogeneic BMT were investigated. Increased levels of serum tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ) were observed after allo-BMT and continuous bortezomib administration. Bortezomib-induced GVHD-dependent mortality was preventable by depletion of CD4+ but not CD8+ T cells from the donor graft. The improved survival correlated with markedly reduced serum TNFα but not IFNγ levels. Transfer of Tnf−/− T cells also protected recipients from bortezomib-induced GVHD-dependent toxicity. Importantly, prolonged administration of bortezomib after transplantation of purified CD8+ T cells resulted in enhanced GVT response, which was dependent on donor CD8+ T cell–derived IFNγ. These results indicate that decreased toxicity and increased efficacy of bortezomib in murine allo-BMT can be achieved by removal of CD4+ T cells from the graft or by inhibiting TNFα.


Blood ◽  
1993 ◽  
Vol 82 (7) ◽  
pp. 2216-2223 ◽  
Author(s):  
RJ Soiffer ◽  
R Gonin ◽  
C Murray ◽  
MJ Robertson ◽  
K Cochran ◽  
...  

Abstract Graft-versus-host disease (GVHD) is a major cause of morbidity and mortality following allogeneic bone marrow transplantation (BMT). Because GVHD is frequently refractory to treatment, the early identification of high-risk patients could have significant clinical value. To identify such patients, we examined early immunologic recovery in 136 patients with hematologic malignancies who received anti-T12 (CD6)-purged allogeneic bone marrow over a 9-year period. The majority of patients received marrow from HLA-matched sibling donors after ablation with cyclophosphamide and total body irradiation. No patients received any immune suppressive medications for GVHD prophylaxis. The fraction and absolute numbers of peripheral blood lymphocytes (PBL) expressing the CD3, CD4, CD8, and CD56 surface antigens were determined weekly by immunofluorescence analysis in patients beginning 8 to 14 days (week 2) after marrow infusion. Results in patients who did or did not subsequently develop GVHD post-BMT were compared. Within 2 weeks of marrow infusion, patients who developed grades 2–4 GVHD had significantly higher percentages and absolute numbers of CD8+ T cells and a lower fraction of CD56+ natural killer (NK) cells than individuals who remained free of GVHD. Thirty-five percent of patients whose PBL were greater than 25% CD8+ in the second posttransplant week developed GVHD, compared with only 3% of patients who had < or = 25% CD8+ cells (odds ratio 37.8; 95% confidence interval [CI] 4.1 to 397). A subgroup of patients at very high risk for GVHD could be identified based on the combined frequency of CD8+ T cells and NK cells in blood. Seventy-five percent of patients with greater than 25% CD8+ cells and < or = 45% CD56+ cells during week 2 post-BMT developed GVHD, compared with only 11% of the remaining patients (odds ratio 24.9; 95% CI, 5.3 to 117.0). None of the 23 patients with both less than 25% CD8+ cells and greater than 45% CD56+ cells in the second posttransplant week developed grades 2–4 GVHD. Our findings indicate that CD8+ T cells play an important role in the pathogenesis of GVHD in humans. Analysis of immune reconstitution early after BMT is useful in predicting the onset of GVHD and can help direct the implementation of treatment strategies before the appearance of clinical manifestations. Such interventions may decrease the morbidity and mortality associated with allogeneic BMT and ultimately improve overall survival.


2008 ◽  
Vol 59 (6) ◽  
pp. 635-636
Author(s):  
T. M. Kollgaard ◽  
S. Reker ◽  
S. L. Petersen ◽  
T. N. Masmas ◽  
L. L. Vindelov ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (22) ◽  
pp. 2351-2361 ◽  
Author(s):  
Lauren P. McLaughlin ◽  
Rayne Rouce ◽  
Stephen Gottschalk ◽  
Vicky Torrano ◽  
George Carrum ◽  
...  

Abstract There is a Blood Commentary on this article in this issue.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 873-885 ◽  
Author(s):  
Margot Zöller ◽  
Annette Schmidt ◽  
Angela Denzel ◽  
Jürgen Moll

Abstract Constitutive expression of a rat CD44 variant isoform, rCD44v4-v7, on murine T cells accelerates immune responsiveness. Because prolonged immunodeficiency can be a major drawback in allogeneic bone marrow transplantation, we considered it of special interest to see whether repopulation of lethally irradiated syngeneic and allogeneic mice may be influenced by constitutive expression of the rCD44v4-v7 transgene. When lethally irradiated syngeneic and allogeneic mice were reconstituted with bone marrow cells (BMC) from rCD44v4-v7 transgenic (TG) or nontransgenic (NTG) mice, the former had a clear repopulation advantage: thymocytes expanded earlier after reconstitution and, as a consequence, higher numbers of lymphocytes were recovered from spleen and lymph nodes. Lymphocytes also displayed functional activity in advance to those from mice reconstituted with BMC from NTG mice. Most importantly, after the transfer of BMC from TG mice into an allogeneic host, the frequency of host-reactive T cells decreased rapidly. Apparently, this was due to accelerated induction of tolerance. Because these effects were counterregulated by an rCD44v6-specific antibody, it is likely that they could be attributed to the rCD44v4-v7 TG product. Thus, expression of a CD44 variant isoform at high levels facilitated reconstitution with allogeneic BMC by accelerated establishment of tolerance and the regaining of immunocompetence.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1271-1271
Author(s):  
Kirsten M. Williams ◽  
Yu-Waye Chu ◽  
Ronald E. Gress

Abstract Impaired thymopoiesis contributes to immune deficiency in aging, AIDS, and following allogeneic bone marrow transplantation. However, little is known of the mechanisms of thymic regulation and the determinants of thymic function. Exogenous administration of testosterone and estrogen has been shown to accelerate thymic involution. Conversely, studies have demonstrated that castration of male mice resulted in increased thymic size and thymocyte number. We present data that thymic enlargement in castrated male mice is due to enhanced thymopoiesis. Comparing castrated post-pubertal male mice with age-matched control littermates, we found a statistically significant doubling of thymic weight, thymocyte number, and double-positive CD4+CD8+ thymocytes as early as eight days post-orchiectomy. Major thymocyte subsets defined as CD4− CD8−, CD4+CD8−, CD8+CD4− were also increased post castration and the ratio of subsets was unchanged suggesting that castration augmented overall thymic activity. This was further corroborated by a concomitant 4–6 fold increase in thymic T cell-receptor excision circles (TREC). Significantly, at one month post-castration, early thymic progenitors (Lin- CKIT hi CD44 hi) were increased threefold in the castrated cohort. The increase in thymic productivity led to a subsequent increase in peripheral cell populations, with a significant increase in splenic CD4+ and CD8+ T cells. The greatest proportion of this increase was due to naïve splenic CD4 and CD8 T cells total numbers as defined by CD44lo expression. Memory splenocytes, CD44hi CD4+ and CD8+ cells, were slightly increased as well. Additionally, there was an increase in the number of splenic recent thymic emigrants (RTE) as enumerated by TREC. Our data suggest that androgen withdrawal leads to an increase in thymopoiesis, as enumerated by a significant influx of ETPs, increased total thymic TREC, subsequent increases in single positive thymocytes, and increased peripheral recent thymic emigrants. Furthermore, the data suggest that a mechanism by which this occurs is through increased immigration of thymocyte precursors from the bone marrow into the thymus identifying this as a central point in thymic regulation.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5167-5167
Author(s):  
Yihuan Chai ◽  
Huiying Qiu ◽  
Hui Lv

Abstract One of the main goals in allogeneic bone marrow(BM) transplantation is the abrogation of graft-versus-host disease (GVHD) with the preservation of antileukemia and antiviral activity. The Study present a selective T cell depletion strategy based on the physical separation of the alloreactive T cells, which were identified by expression of two activation-induced antigens (CD25 and CD69). T cells from C57BL/6(H-2b) mice were first activated with BALB/c (H-2d) recipient spleen cells in a 2-day mixed-lymphocyte-culture (MLC). Following this activation, this compound is selectively depleted based on expression of two activation-induced antigens CD25 and CD69 using magnetic cell sorting. The depleted cells or the untreated cells were then rechallenged respectively in a secondary MLC, with the same stimulator cells or a third-party (DBAH-2k) or tumor- specific (SP2/0, BALB/c-origin myeloma) cells. Cells proliferation were assayed at the indicated time points(1, 2, 3, 4, 5 days). These treated cells or control-cultured cells (2.0×106) mixed with 5.0×106 BM cells from C57BL/6 were transfused respectively by the trail vain into the lethally irradiated BALB/c to observe the survival time, GVHD incidence and pathological analysis. MLC assays demonstrated that this technique led to a significant decrease in alloreactivity of donor cells(29.02~64.17%), which at the same time preserved reactivity against third party cells(49.61~75.69%)and anti-tumor cells(61.14~68.62%). The mice in the group of control-coclutured were died of acute GVHD within 24days. The 7 recipient mice in the treated group were free of acute GVHD, and 3 mice were died of acute GVHD (aGVHD) within 23 days. MACS-based ex-vivo depletion of alloreactive donor T cells based on expression of two activation-induced antigens (CD25 and CD69) could inhibit anti-host responses, by contrast, anti-SP2/O and anti-third-party responses were preserved. Cotransplantation of these selected depleted cells and BM cells could reduce aGVHD.


Sign in / Sign up

Export Citation Format

Share Document