scholarly journals Estimation of bone conduction skull transmission by hearing thresholds and ear-canal sound pressure

2013 ◽  
Vol 299 ◽  
pp. 19-28 ◽  
Author(s):  
Sabine Reinfeldt ◽  
Stefan Stenfelt ◽  
Bo Håkansson
1965 ◽  
Vol 8 (2) ◽  
pp. 137-148 ◽  
Author(s):  
David P. Goldstein ◽  
Claude S. Hayes

This experiment tested the hypothesis that the occlusion effect is accompanied by an increase in sound pressure level in the external auditory canal. Pure tone bone conduction thresholds and sound pressure levels were measured, first with the ear canal open, then with the ear canal closed, at two positions of the bone vibrator and at five frequencies in 28 normal listeners. Statistical analyses revealed a significant difference between measures at 250, 500, and 1 000 cps but not at 2 000 and 4 000 cps. Average sound pressure level shifts tended to be larger than their threshold measure counterparts. The two measures, nevertheless, yielded positive correlations.


2020 ◽  
Vol 41 (1) ◽  
pp. 384-385
Author(s):  
Xiuyuan Qin ◽  
Sho Otsuka ◽  
Seiji Nakagawa

1977 ◽  
Vol 86 (4) ◽  
pp. 441-450 ◽  
Author(s):  
Richard L. Goode ◽  
Robert Friedrichs ◽  
Stephen Falk

Modifications of external ear anatomy following tympanomastoid surgery can have significant effects on the hearing threshold. Experiments are described that demonstrate the acoustical effect of changes in the dimensions of the concha and ear canal on external ear sound pressure gain. An attempt is made to correlate these findings with results in 30 post-tympanomastoidectomy ears and develop some basic principles of external ear surgery that might be clinically useful.


1998 ◽  
Vol 7 (2) ◽  
pp. 50-54 ◽  
Author(s):  
Marc A. Fagelson ◽  
Frederick N. Martin

Comparisons were made between changes in the audibility of bone-conduction stimuli to differences in the sound pressure present in the external auditory canal when ears were occluded. Fifteen listeners with normal middle ear function were tested using pure tones of 250, 500, and 1000 Hz, delivered via a bone-conduction oscillator placed on the mastoid process and the frontal bone. At all three frequencies, and both sites of stimulation, ear canal sound pressures were greater in the occluded than in the unoccluded conditions. Concurrently, the test signals were detected at lower intensities, although the changes in audibility and external canal sound pressure levels were not unity. The occlusion effect was attenuated slightly when the skull was vibrated from the frontal bone.


2021 ◽  
Vol 11 (2) ◽  
pp. 254-262
Author(s):  
Tadashi Nishimura ◽  
Hiroshi Hosoi ◽  
Ryota Shimokura ◽  
Chihiro Morimoto ◽  
Tadashi Kitahara

Cartilage conduction (CC) is a form of conduction that allows a relatively loud sound to be audible when a transducer is placed on the aural cartilage. The CC transmission mechanism has gradually been elucidated, allowing for the development of CC hearing aids (CC-HAs), which are clinically available in Japan. However, CC is still not fully understood. This review summarizes previous CC reports to facilitate its understanding. Concerning the transmission mechanism, the sound pressure level in the ear canal was found to increase when the transducer was attached to the aural cartilage, compared to an unattached condition. Further, inserting an earplug and injecting water into the ear canal shifted the CC threshold, indicating the considerable influence of cartilage–air conduction on the transmission. In CC, the aural cartilage resembles the movable plate of a vibration speaker. This unique transduction mechanism is responsible for the CC characteristics. In terms of clinical applications, CC-HAs are a good option for patients with aural atresia, despite inferior signal transmission compared to bone conduction in bony atretic ears. The advantages of CC, namely comfort, stable fixation, esthetics, and non-invasiveness, facilitate its clinical use.


2021 ◽  
Vol 11 (2) ◽  
pp. 207-219
Author(s):  
Susan E. Ellsperman ◽  
Emily M. Nairn ◽  
Emily Z. Stucken

Bone conduction is an efficient pathway of sound transmission which can be harnessed to provide hearing amplification. Bone conduction hearing devices may be indicated when ear canal pathology precludes the use of a conventional hearing aid, as well as in cases of single-sided deafness. Several different technologies exist which transmit sound via bone conduction. Here, we will review the physiology of bone conduction, the indications for bone conduction amplification, and the specifics of currently available devices.


2021 ◽  
Vol 11 (3) ◽  
pp. 327-334
Author(s):  
Ryota Shimokura ◽  
Tadashi Nishimura ◽  
Hiroshi Hosoi

Because cartilage conduction—the transmission of sound via the aural cartilage—has different auditory pathways from well-known air and bone conduction, how the output volume in the external auditory canal is stimulated remains unknown. To develop a simulator approximating the conduction of sound in ear cartilage, the vibrations of the pinna and sound in the external auditory canal were measured using pinna simulators made of silicon rubbers of different hardness (A40, A20, A10, A5, A0) as measured by a durometer. The same procedure, as well as a current calibration method for air conduction devices, was applied to an existing pinna simulator, the Head and Torso Simulator (hardness A5). The levels for vibration acceleration and sound pressure from these pinna simulators show spectral peaks at dominant frequencies (below 1.5 kHz) for the conduction of sound in cartilage. These peaks were likely to move to lower frequencies as hardness decreases. On approaching the hardness of actual aural cartilage (A10 to A20), the simulated levels for vibration acceleration and sound pressure approximated the measurements of human ears. The adjustment of the hardness used in pinna simulators is an important factor in simulating accurately the conduction of sound in cartilage.


Sign in / Sign up

Export Citation Format

Share Document