scholarly journals Semi-automated Quantification of Hair Cells in the Mature Mouse Utricle

2022 ◽  
pp. 108429
Author(s):  
Cathy Yea Won Sung ◽  
Melanie Barzik ◽  
Tucker Costain ◽  
Lizhen Wang ◽  
Lisa L. Cunningham
Author(s):  
G.J. Spector ◽  
C.D. Carr ◽  
I. Kaufman Arenberg ◽  
R.H. Maisel

All studies on primary neural degeneration in the cochlea have evaluated the end stages of degeneration or the indiscriminate destruction of both sensory cells and cochlear neurons. We have developed a model which selectively simulates the dystrophic changes denoting cochlear neural degeneration while sparing the cochlear hair cells. Such a model can be used to define more precisely the mechanism of presbycusis or the hearing loss in aging man.Twenty-two pigmented guinea pigs (200-250 gm) were perfused by the perilymphatic route as live preparations using fluorocitrate in various concentrations (15-250 ug/cc) and at different incubation times (5-150 minutes). The barium salt of DL fluorocitrate, (C6H4O7F)2Ba3, was reacted with 1.0N sulfuric acid to precipitate the barium as a sulfate. The perfusion medium was prepared, just prior to use, as follows: sodium phosphate buffer 0.2M, pH 7.4 = 9cc; fluorocitrate = 15-200 mg/cc; and sucrose = 0.2M.


Author(s):  
W.R. Jones ◽  
S. Coombs ◽  
J. Janssen

The lateral line system of the mottled sculpin, like that of most bony fish, has both canal (CNM) and superficial (SNM) sensory end organs, neuromasts, which are distributed on the head and trunk in discrete, readily identifiable groupings (Fig. 1). CNM and SNM differ grossly in location and in overall size and shape. The former are located in subdermal canals and are larger and asymmetric in shape, The latter are located directly on the surface of the skin and are much smaller and more symmetrical It has been suggested that the two may differ at a more fundamental level in such functionally related parameters as extent of myelination of innervating fibers and the absence of efferent innervation in SNM. The present study addresses the validity of these last two features as distinguishing criteria by examining the structure of those SNM populations indicated in Fig. 1 at both the light and electron microscopic levels.All of the populations of SNM examined conform in general to previously published descriptions, consisting of a neuroepithelium composed of sensory hair cells, support cells and mantle cells, Several significant differences from these accounts have, however, emerged. Firstly, the structural composition of the innervating fibers is heterogeneous with respect to the extent of myelination. All SNM groups, with the possible exception of the TRrs and CFLs, possess both myelinated and unmyelinated fibers within the neuroepithelium proper (Fig. 2), just as do CNM. The extent of myelina- tion is quite variable, with some fibers sheath terminating just before crossing the neuroepithelial basal lamina, some just after and a few retaining their myelination all the way to the base of the hair cells in the upper third of the neuroepithelium. Secondly, all SNMs possess fibers that may, on the basis of ultrastructural criteria, be identified as efferent. Such fibers contained numerous cytoplasmic vesicles, both clear and with dense cores. In regions where such fibers closely apposed hair cells, subsynaptic cisternae were observed in the hair cell (Fig. 3).


Author(s):  
Zhixian Wang ◽  
Pinjin Zhu ◽  
Jianhe Sun ◽  
Xuezheng Song

Hearing research is important not only for clinical, professional and military medicine, but also for toxicology, gerontology and genetics. Ultrastructure of the cochlea attracts much attention of electron microscopists, (1―3) but the research lags far behind that of the other parts of the organnism. On the basis of careful microdissection, technical improvment and accurate observation, we have got some new findings which have not been reported in the literature.We collected four cochleas from human corpses. Temporal bones dissected 1 h after death and cochleas perfused with fixatives 4 h after death were good enough in terms of preservation of fine structures. SEM:The apical surface of OHCs (Outer hair cells) and DTs (Deiters cells) is narrower than that of IPs (Inner pillar cells). The mosaic configuration of the reticular membrane is not typical. The stereocilia of IHCs (Inner hair cells) are not uniform and some kinocilia could be seen on the OHCs in adults. The epithelial surface of RM (Reissner’s membrane) is not smooth and no mesh could be seen on the mesothelial surface of RM. TEM.


2013 ◽  
Vol 40 (2) ◽  
Author(s):  
Asti Kristianti ◽  
Teti Madiadipoera ◽  
Bogi Soeseno

Background: Chemotherapy is worldwide used nowadays, and its toxicity still remain a problemespecially toxicity to the ear (ototoxicity). Cisplatin (cis-diamminedichloroplatinum) is one of themost commonly used chemotherapy and highly potent in treating epithelial malignancies. Ototoxicitycaused by cisplatin is irreversible, progressive, bilateral, sensorineural hearing loss especially on highfrequency (4-8 KHz) accompanied by tinnitus. Purpose: To observe the cochlear outer hair cells damagein malignancies patients treated with cisplatin. Methods: This study is an observational analytic studywith prospective design to determine the influence of high dose cisplatin on cochlear outer hair cellsfunction. The research was carried out at the ENT-HNS Department, Hasan Sadikin General HospitalBandung, from November 2007 until June 2008. Audiometry, tympanometry, and distortion productotoacoustic emission (DPOAE) examinations were conducted before chemotherapy and DPOAE, andtimpanometry was again measured three days after first and second cycles of cisplatin administration. McNemar test was performed to calculate the effects of high-dose cisplatin to the cochlear outer haircells function. To compare pre and post-cisplatin on alteration of cochlear hair cells function, Wilcoxontest was used. Results: In this study 60 ears from 30 subjects that meet the inclusion criteria, consistedof 25 man (83.3%) and 5 women (16.7%). The prevalence of damaged cochlear outer hair cells were63% at first cycle and 70% at second cycle of cisplatin administration. The decline of cochlear outerhair cells function was significant (p<0.001). Conclusion: High-dose cisplatin decreases cochlear outerhair cells function in patients with malignant neoplasm. Abstrak : Latar belakang: Kemoterapi sekarang rutin digunakan secara klinis di seluruh dunia. Sejalan denganhal tersebut toksisitas kemoterapi, khususnya terhadap telinga saat ini menjadi perhatian. Sisplatin(cis-diamminedichloroplatinum) adalah salah satu obat kemoterapi yang paling banyak digunakandan paling manjur untuk terapi keganasan epitelial. Efek ototoksik sisplatin yaitu terjadi gangguandengar sensorineural yang irreversible, progresif, bilateral pada frekuensi tinggi (4-8 kHz), dan disertaidengan tinitus. Tujuan: Untuk menilai penurunan fungsi sel rambut luar koklea pada penderita tumorganas sesudah pemberian sisplatin dosis tinggi dengan menggunakan DPOAE. Metode: Studi analitikobservasional dengan rancangan prospektif di Bagian IK. THT-KL RS. Hasan Sadikin Bandung mulaibulan November 2007 sampai dengan Juni 2008. Pada penelitian ini dilakukan pemeriksaan audiometrinada murni, timpanometri, dan distortion product otoacoustic emission (DPOAE) prakemoterapi, kemudianDPOAE dan timpanometri diulang tiga hari sesudah siklus pertama dan kedua kemoterapi sisplatin. Datayang diperoleh diuji dengan uji McNemar dan uji Wilcoxon. Hasil: Dari penelitian didapat 60 telingadari 30 subjek penelitian yang memenuhi kriteria inklusi yang terdiri dari 25 laki-laki (83,3%) dan 5perempuan (16,7%). Insidens penurunan fungsi sel rambut luar koklea sebesar 63% (38 kasus) sesudahsiklus pertama dan 70% (42 kasus) sesudah siklus kedua. Hubungan penurunan fungsi sel rambut luarkoklea memberikan nilai yang sangat bermakna sejak pemberian siklus pertama (p<0,001). Kesimpulan:Pemberian sisplatin dosis tinggi pada penderita tumor ganas menyebabkan penurunan fungsi sel rambutluar koklea.Kata kunci: kemoterapi, sisplatin dosis tinggi, sel rambut luar koklea.


2009 ◽  
Vol 5 (2) ◽  
pp. 10 ◽  
Author(s):  
Jose Luis Zamorano ◽  

3D echocardiography (3DE) will gain increasing acceptance as a routine clinical tool as the technology evolves due to advances in technology and computer processing power. Images obtained from 3DE provide more accurate assessment of complex cardiac anatomy and sophisticated functional mechanisms compared with conventional 2D echocardiography (2DE), and are comparable to those achieved with magnetic resonance imaging. Many of the limitations associated with the early iterations of 3DE prevented their widespread clinical application. However, recent significant improvements in transducer and post-processing software technologies have addressed many of these issues. Furthermore, the most recent advances in the ability to image the entire heart in realtime and fully automated quantification have poised 3DE to become more ubiquitous in clinical routine. Realtime 3DE (RT3DE) systems offer further improvements in the diagnostic and treatment planning capabilities of cardiac ultrasound. Innovations such as the ability to acquire non-stitched, realtime, full-volume 3D images of the heart in a single heart cycle promise to overcome some of the current limitations of current RT3DE systems, which acquire images over four to seven cardiac cycles, with the need for gating and the potential for stitch artefacts.


Sign in / Sign up

Export Citation Format

Share Document