Defining Protein Interactions: Ankle Link Proteins of Stereocilia in Hair Cells

2016 ◽  
Author(s):  
Ladan Yazdidoust
2005 ◽  
Vol 15 (5-6) ◽  
pp. 225-241
Author(s):  
Kirk W. Beisel ◽  
Yesha Wang-Lundberg ◽  
Adel Maklad ◽  
Bernd Fritzsch

Herein, we will review molecular aspects of vestibular ear development and present them in the context of evolutionary changes and hair cell regeneration. Several genes guide the development of anterior and posterior canals. Although some of these genes are also important for horizontal canal development, this canal strongly depends on a single gene, Otx1. Otx1 also governs the segregation of saccule and utricle. Several genes are essential for otoconia and cupula formation, but protein interactions necessary to form and maintain otoconia or a cupula are not yet understood. Nerve fiber guidance to specific vestibular end-organs is predominantly mediated by diffusible neurotrophic factors that work even in the absence of differentiated hair cells. Neurotrophins, in particular Bdnf, are the most crucial attractive factor released by hair cells. If Bdnf is misexpressed, fibers can be redirected away from hair cells. Hair cell differentiation is mediated by Atoh1. However, Atoh1 may not initiate hair cell precursor formation. Resolving the role of Atoh1 in postmitotic hair cell precursors is crucial for future attempts in hair cell regeneration. Additional analyses are needed before gene therapy can help regenerate hair cells, restore otoconia, and reconnect sensory epithelia to the brain.


Author(s):  
S.B. Andrews ◽  
R.D. Leapman ◽  
P.E. Gallant ◽  
T.S. Reese

As part of a study on protein interactions involved in microtubule (MT)-based transport, we used the VG HB501 field-emission STEM to obtain low-dose dark-field mass maps of isolated, taxol-stabilized MTs and correlated these micrographs with detailed stereo images from replicas of the same MTs. This approach promises to be useful for determining how protein motors interact with MTs. MTs prepared from bovine and squid brain tubulin were purified and free from microtubule-associated proteins (MAPs). These MTs (0.1-1 mg/ml tubulin) were adsorbed to 3-nm evaporated carbon films supported over Formvar nets on 600-m copper grids. Following adsorption, the grids were washed twice in buffer and then in either distilled water or in isotonic or hypotonic ammonium acetate, blotted, and plunge-frozen in ethane/propane cryogen (ca. -185 C). After cryotransfer into the STEM, specimens were freeze-dried and recooled to ca.-160 C for low-dose (<3000 e/nm2) dark-field mapping. The molecular weights per unit length of MT were determined relative to tobacco mosaic virus standards from elastic scattering intensities. Parallel grids were freeze-dried and rotary shadowed with Pt/C at 14°.


Author(s):  
G.J. Spector ◽  
C.D. Carr ◽  
I. Kaufman Arenberg ◽  
R.H. Maisel

All studies on primary neural degeneration in the cochlea have evaluated the end stages of degeneration or the indiscriminate destruction of both sensory cells and cochlear neurons. We have developed a model which selectively simulates the dystrophic changes denoting cochlear neural degeneration while sparing the cochlear hair cells. Such a model can be used to define more precisely the mechanism of presbycusis or the hearing loss in aging man.Twenty-two pigmented guinea pigs (200-250 gm) were perfused by the perilymphatic route as live preparations using fluorocitrate in various concentrations (15-250 ug/cc) and at different incubation times (5-150 minutes). The barium salt of DL fluorocitrate, (C6H4O7F)2Ba3, was reacted with 1.0N sulfuric acid to precipitate the barium as a sulfate. The perfusion medium was prepared, just prior to use, as follows: sodium phosphate buffer 0.2M, pH 7.4 = 9cc; fluorocitrate = 15-200 mg/cc; and sucrose = 0.2M.


Author(s):  
W.R. Jones ◽  
S. Coombs ◽  
J. Janssen

The lateral line system of the mottled sculpin, like that of most bony fish, has both canal (CNM) and superficial (SNM) sensory end organs, neuromasts, which are distributed on the head and trunk in discrete, readily identifiable groupings (Fig. 1). CNM and SNM differ grossly in location and in overall size and shape. The former are located in subdermal canals and are larger and asymmetric in shape, The latter are located directly on the surface of the skin and are much smaller and more symmetrical It has been suggested that the two may differ at a more fundamental level in such functionally related parameters as extent of myelination of innervating fibers and the absence of efferent innervation in SNM. The present study addresses the validity of these last two features as distinguishing criteria by examining the structure of those SNM populations indicated in Fig. 1 at both the light and electron microscopic levels.All of the populations of SNM examined conform in general to previously published descriptions, consisting of a neuroepithelium composed of sensory hair cells, support cells and mantle cells, Several significant differences from these accounts have, however, emerged. Firstly, the structural composition of the innervating fibers is heterogeneous with respect to the extent of myelination. All SNM groups, with the possible exception of the TRrs and CFLs, possess both myelinated and unmyelinated fibers within the neuroepithelium proper (Fig. 2), just as do CNM. The extent of myelina- tion is quite variable, with some fibers sheath terminating just before crossing the neuroepithelial basal lamina, some just after and a few retaining their myelination all the way to the base of the hair cells in the upper third of the neuroepithelium. Secondly, all SNMs possess fibers that may, on the basis of ultrastructural criteria, be identified as efferent. Such fibers contained numerous cytoplasmic vesicles, both clear and with dense cores. In regions where such fibers closely apposed hair cells, subsynaptic cisternae were observed in the hair cell (Fig. 3).


Author(s):  
Zhixian Wang ◽  
Pinjin Zhu ◽  
Jianhe Sun ◽  
Xuezheng Song

Hearing research is important not only for clinical, professional and military medicine, but also for toxicology, gerontology and genetics. Ultrastructure of the cochlea attracts much attention of electron microscopists, (1―3) but the research lags far behind that of the other parts of the organnism. On the basis of careful microdissection, technical improvment and accurate observation, we have got some new findings which have not been reported in the literature.We collected four cochleas from human corpses. Temporal bones dissected 1 h after death and cochleas perfused with fixatives 4 h after death were good enough in terms of preservation of fine structures. SEM:The apical surface of OHCs (Outer hair cells) and DTs (Deiters cells) is narrower than that of IPs (Inner pillar cells). The mosaic configuration of the reticular membrane is not typical. The stereocilia of IHCs (Inner hair cells) are not uniform and some kinocilia could be seen on the OHCs in adults. The epithelial surface of RM (Reissner’s membrane) is not smooth and no mesh could be seen on the mesothelial surface of RM. TEM.


2013 ◽  
Vol 54 ◽  
pp. 79-90 ◽  
Author(s):  
Saba Valadkhan ◽  
Lalith S. Gunawardane

Eukaryotic cells contain small, highly abundant, nuclear-localized non-coding RNAs [snRNAs (small nuclear RNAs)] which play important roles in splicing of introns from primary genomic transcripts. Through a combination of RNA–RNA and RNA–protein interactions, two of the snRNPs, U1 and U2, recognize the splice sites and the branch site of introns. A complex remodelling of RNA–RNA and protein-based interactions follows, resulting in the assembly of catalytically competent spliceosomes, in which the snRNAs and their bound proteins play central roles. This process involves formation of extensive base-pairing interactions between U2 and U6, U6 and the 5′ splice site, and U5 and the exonic sequences immediately adjacent to the 5′ and 3′ splice sites. Thus RNA–RNA interactions involving U2, U5 and U6 help position the reacting groups of the first and second steps of splicing. In addition, U6 is also thought to participate in formation of the spliceosomal active site. Furthermore, emerging evidence suggests additional roles for snRNAs in regulation of various aspects of RNA biogenesis, from transcription to polyadenylation and RNA stability. These snRNP-mediated regulatory roles probably serve to ensure the co-ordination of the different processes involved in biogenesis of RNAs and point to the central importance of snRNAs in eukaryotic gene expression.


Sign in / Sign up

Export Citation Format

Share Document