scholarly journals Spatial and temporal characteristics of soil conservation service in the area of the upper and middle of the Yellow River, China

Heliyon ◽  
2019 ◽  
Vol 5 (12) ◽  
pp. e02985
Author(s):  
Mingyong Zhu ◽  
Wenming He ◽  
Quanfa Zhang ◽  
Yongzhu Xiong ◽  
Shuduan Tan ◽  
...  
Author(s):  
Xiaofeng WANG ◽  
Feiyan XIAO ◽  
Xiaoming FENG ◽  
Bojie FU ◽  
Zixiang ZHOU ◽  
...  

ABSTRACTSoil conservation on the Loess Plateau is important not only for local residents but also for reducing sediment downstream in the Yellow River. In this paper, we report a decrease in soil erosion from 2000 to 2010 as a result of the ‘Grain for Green' (GFG) Project. By using the Revised Universal Soil Loss Equation and data on land cover, climate and sediment yield, we found that soil erosion decreased from 6579.55tkm–2yr–1 in 2000 to 1986.66tkm–2yr–1 in 2010. During this period, there was a major land cover change from farmland to grassland in response to the GFG. The area of low vegetation coverage with severe erosion decreased dramatically, whereas the area of high vegetation coverage with slight erosion increased. Our study demonstrates that the reduction in soil erosion on the Loess Plateau contributed to the decrease in the sediment concentration in the Yellow River.


2020 ◽  
Author(s):  
Yiming An ◽  
Wenwu Zhao

<p>Soil conservation service is an important regulating ecosystem service. We estimated the soil conservation rate of the top five largest basins in the world from 2000 to 2018, classified the trend of conservation rate for each basin and each location as four types (i.e., significant decrease, decrease, increase and significant increase), and analyzed the relationships between soil conservation rate and driving factors. Results show that the Yangtze River basin produces the highest average soil conservation rate (with the value of 1429.68 t ha<sup>-1</sup> yr<sup>-1</sup>). The Yangtze, Mississippi and Yellow River basins show a generally increasing conservation trend. Partial principal component analysis between soil conservation rate and driving factors show that slope gradient has the greatest impact on soil conservation rate, followed by rainfall and NDVI. Vegetation greening (increasing NDVI) could partly offset the effect of increasing rainfall on soil conservation rate in the Mississippi and Yellow River basins. More direct and quantitative variables should be used to represent human activities to analyze the impact on soil conservation change.</p>


Sign in / Sign up

Export Citation Format

Share Document