scholarly journals Identification of genetic modifiers of lifespan on a high sugar diet in the Drosophila Genetic Reference Panel

Heliyon ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. e07153
Author(s):  
Sumit P. Patel ◽  
Matthew E. Talbert
2019 ◽  
Author(s):  
Logan J. Everett ◽  
Wen Huang ◽  
Shanshan Zhou ◽  
Mary Anna Carbone ◽  
Richard F. Lyman ◽  
...  

SummaryA major challenge in modern biology is to understand how naturally occurring variation in DNA sequences affects complex organismal traits through networks of intermediate molecular phenotypes. Here, we performed deep RNA sequencing of 200 Drosophila Genetic Reference Panel inbred lines with complete genome sequences, and mapped expression quantitative trait loci for annotated genes, novel transcribed regions (most of which are long noncoding RNAs), transposable elements and microbial species. We identified host variants that affect expression of transposable elements, independent of their copy number, as well as microbiome composition. We constructed sex-specific expression quantitative trait locus regulatory networks. These networks are enriched for novel transcribed regions and target genes in heterochromatin and euchromatic regions of reduced recombination, and genes regulating transposable element expression. This study provides new insights regarding the role of natural genetic variation in regulating gene expression and generates testable hypotheses for future functional analyses.


2021 ◽  
Author(s):  
Adam N Spierer ◽  
David M. Rand

A central challenge of quantitative genetics is partitioning phenotypic variation into genetic and non-genetic components. These non-genetic components are usually interpreted as environmental effects; however, variation between genetically identical individuals in a common environment can still exhibit phenotypic variation. A trait's resistance to variation is called robustness, though the genetics underlying it are poorly understood. Accordingly, we performed an association study on a previously studied, whole organism trait: robustness for flight performance. Using 197 of the Drosophila Genetic Reference Panel (DGRP) lines, we surveyed variation across single nucleotide polymorphisms, whole genes, and epistatic interactions to find genetic modifiers robustness for flight performance. There was an abundance of genes involved in the development of sensory organs and processing of external stimuli, supporting previous work that processing proprioceptive cues is important for affecting variation in flight performance. Additionally, we tested insertional mutants for their effect on robustness using candidate genes found to modify flight performance. These results suggest several genes involved in modulating a trait mean are also important for affecting trait variance, or robustness, as well.


Genetics ◽  
2021 ◽  
Author(s):  
Jacinta Davis ◽  
Claire Da Silva Santos ◽  
Narda Caudillo Zavala ◽  
Nicholas Gans ◽  
Daniel Patracuolla ◽  
...  

Abstract Parkinson’s Disease (PD) is primarily characterized by the loss of dopaminergic (DA) neurons in the brain. However, little is known about why DA neurons are selectively vulnerable to PD. To identify genes that are associated with DA neuron loss, we screened through 201 wild-caught populations of Drosophila melanogaster as part of the Drosophila Genetic Reference Panel (DGRP). Here we identify the top associated genes containing SNPs that render DA neurons vulnerable. These genes were further analyzed by using mutant analysis and tissue-specific knockdown for functional validation. We found that this loss of DA neurons caused progressive locomotor dysfunction in mutants and gene knockdown analysis. The identification of genes associated with the progressive loss of DA neurons should help to uncover factors that render these neurons vulnerable in PD, and possibly develop strategies to make these neurons more resilient.


2015 ◽  
Author(s):  
John E Pool

North American populations of Drosophila melanogaster are thought to derive from both European and African source populations, but despite their importance for genetic research, patterns of admixture along their genomes are essentially undocumented. Here, I infer geographic ancestry along genomes of the Drosophila Genetic Reference Panel (DGRP) and the D. melanogaster reference genome. Overall, the proportion of African ancestry was estimated to be 20% for the DGRP and 9% for the reference genome. Based on the size of admixture tracts and the approximate timing of admixture, I estimate that the DGRP population underwent roughly 13.9 generations per year. Notably, ancestry levels varied strikingly among genomic regions, with significantly less African introgression on the X chromosome, in regions of high recombination, and at genes involved in specific processes such as circadian rhythm. An important role for natural selection during the admixture process was further supported by a genome-wide signal of ancestry disequilibrium, in that many between-chromosome pairs of loci showed a deficiency of Africa-Europe allele combinations. These results support the hypothesis that admixture between partially genetically isolated Drosophila populations led to natural selection against incompatible genetic variants, and that this process is ongoing. The ancestry blocks inferred here may be relevant for the performance of reference alignment in this species, and may bolster the design and interpretation of many population genetic and association mapping studies.


2020 ◽  
Vol 30 (3) ◽  
pp. 485-496 ◽  
Author(s):  
Logan J. Everett ◽  
Wen Huang ◽  
Shanshan Zhou ◽  
Mary Anna Carbone ◽  
Richard F. Lyman ◽  
...  

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Michael V. Frochaux ◽  
Maroun Bou Sleiman ◽  
Vincent Gardeux ◽  
Riccardo Dainese ◽  
Brian Hollis ◽  
...  

2019 ◽  
Vol 1 (12) ◽  
pp. 1226-1242 ◽  
Author(s):  
Roel P. J. Bevers ◽  
Maria Litovchenko ◽  
Adamandia Kapopoulou ◽  
Virginie S. Braman ◽  
Matthew R. Robinson ◽  
...  

2020 ◽  
Author(s):  
Adam N. Spierer ◽  
Jim A. Mossman ◽  
Samuel Pattillo Smith ◽  
Lorin Crawford ◽  
Sohini Ramachandran ◽  
...  

AbstractThe winged insects of the order Diptera are colloquially named for their most recognizable phenotype: flight. These insects rely on flight for a number of important life history traits, like dispersal, foraging, and courtship. Despite the importance of flight, relatively little is known about the genetic architecture of variation for flight performance. Accordingly, we sought to uncover the genetic modifiers of flight using a measure of flies’ reaction and response to an abrupt drop in a vertical flight column. We conducted an association study using 197 of the Drosophila Genetic Reference Panel (DGRP) lines, and identified a combination of additive and marginal variants, epistatic interactions, whole genes, and enrichment across interaction networks. We functionally validated 13 of these candidate genes’ (Adgf-A/Adgf-A2/CG32181, bru1, CadN, CG11073, CG15236, CG9766, CREG, Dscam4, form3, fry, Lasp/CG9692, Pde6, Snoo) contribution to flight, two of which (fry and Snoo) also validate a whole gene analysis we introduce for the DGRP: PEGASUS_flies. Overall, our results suggest modifiers of muscle and wing morphology, and peripheral and central nervous system assembly and function are all important for flight performance. Additionally, we identified ppk23, an Acid Sensing Ion Channel (ASIC) homolog, as an important hub for epistatic interactions. These results represent a snapshot of the genetic modifiers affecting drop-response flight performance in Drosophila, with implications for other insects. It also draws connections between genetic modifiers of performance and BMP signaling and ASICs as targets for treating neurodegeneration and neurodysfunction.Author summaryInsect flight is a widely recognizable phenotype of winged insects, hence the name: flies. While fruit flies, or Drosophila melanogaster, are a genetically tractable model, flight performance is a highly integrative phenotype, making it challenging to comprehensively identify the genetic modifiers that contribute to its genetic architecture. Accordingly, we screened 197 Drosophila Genetic Reference Panel lines for their ability to react and respond to an abrupt drop. Using several computational tools, we successfully identified several additive, marginal, and epistatic variants, as well as whole genes and altered sub-networks of gene-gene and protein-protein interaction networks, demonstrating the benefits of using multiple methodologies to elucidate the genetic architecture of complex traits more generally. Many of these significant genes and variants mapped to regions of the genome that affect development of sensory and motor neurons, wing and muscle development, and regulation of transcription factors. We also introduce PEGASUS_flies, a Drosophila-adapted version of the PEGASUS platform first used in human studies, to infer gene-level significance of association based on the distribution of individual variant P-values. Our results contribute to the debate over the relative importance of individual, additive factors and epistatic, or higher order, interactions, in the mapping of genotype to phenotype.


2020 ◽  
Vol 2 (4) ◽  
pp. 381-381
Author(s):  
Roel P. J. Bevers ◽  
Maria Litovchenko ◽  
Adamandia Kapopoulou ◽  
Virginie S. Braman ◽  
Matthew R. Robinson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document