scholarly journals Polyaniline nanofibers, a nanostructured conducting polymer for the remediation of Methyl orange dye from aqueous solutions in fixed-bed column studies

Heliyon ◽  
2021 ◽  
pp. e08180
Author(s):  
Mbongiseni Lungelo Dlamini ◽  
Madhumita Bhaumik ◽  
Kriveshini Pillay ◽  
Arjun Maity
2021 ◽  
Vol 891 ◽  
pp. 31-36
Author(s):  
Jirah Emmanuel T. Nolasco ◽  
Camille Margaret S. Alvarillo ◽  
Joshua L. Chua ◽  
Ysabel Marie C. Gonzales ◽  
Jem Valerie D. Perez

Continuous fixed-bed column studies were performed using nanocomposite beads made up of chitosan, polyethyleneimine, and graphene oxide as adsorbents for the removal of methyl orange (MO) in water. The effects of different operating parameters such as initial MO concentration (5, 10, and 15 ppm), bed height (10, 17.5, and 25 cm), and flow rate (27, 43, and 58 mL/min) were investigated using an upward-flow fixed-bed column set-up. The breakthrough curves generated were fitted with Adams-Bohart, Thomas, Yoon-Nelson, and Yan et al. models. The results showed that Yan et al. model agreed best with the breakthrough curves having an R2 as high as 0.9917. Lastly, design parameters for a large-scale adsorption column were determined via scale-up approach using the parameters obtained from column runs.


2011 ◽  
Vol 287-290 ◽  
pp. 1620-1625
Author(s):  
Yan Wu ◽  
Zai Fang Deng ◽  
Yang Tao ◽  
Xue Gang Luo

Fixed-bed column studies for the removal of Ag(Ⅰ) and Cr(Ⅲ) from individual aqueous solutions using puffed rice husk were investigated in this work. The experiments were conducted to study the effect of important column parameters such as bed height, feed flow rate and feed initial concentration of solution. It was found that increasing bed depth yielded longer service time while increase in influent concentration and flow rate resulted in faster breakthrough. Bed Depth Service Time (BDST) model was applied to analyze the experimental data and the model parameters were evaluated. Good agreement of the experimental breakthrough curves with the model predictions was observed.


2013 ◽  
Vol 285 ◽  
pp. 33-39 ◽  
Author(s):  
Lavinia Tofan ◽  
Carmen Teodosiu ◽  
Carmen Paduraru ◽  
Rodica Wenkert

Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3685 ◽  
Author(s):  
Abdulaziz Ali Alghamdi ◽  
Abdel-Basit Al-Odayni ◽  
Waseem Sharaf Saeed ◽  
Mohammed S. Almutairi ◽  
Fahad A. Alharthi ◽  
...  

The adsorption of methyl orange (MO) from aqueous solutions onto a KOH-activated polypyrrole-based adsorbent (PACK) was investigated using batch and fixed-bed column techniques. The structural, thermal, and morphological properties of the PACK, analyzed by various methods, support its applicability as an adsorbent. An adsorption kinetic study revealed a preferably pseudo-second-order (R2 = 0.9996) and rate-limiting step controlled by both film and intra-particle diffusions. The thermodynamic adsorption tests resulted in negative ΔG°, ΔH°, and ΔS° values, which decreased as the temperature and concentration increased, indicating the spontaneous and exothermic adsorption over 25–45 °C. The adsorption isotherms fit the experimental data in the order of Langmuir ≈ Freundlich > Temkin, with evidence of adsorption operating well via the monolayer physical adsorption process, and maximum monolayer adsorption ranging from 520.8 to 497.5 mg/g. The breakthrough curve of the fixed-bed column experiment was modeled using the Thomas, Yoon–Nelson, and Hill models, resulting in an equilibrium capacity of 57.21 mg/g. A 73% MO recovery was achieved, indicating the possibility of column regeneration. Compared to other adsorbents reported, PACK had comparable or even superior capacity toward MO. For cost-effectiveness, similar nitrogen-containing polymeric wastes could be exploited to obtain such excellent materials for various applications.


2012 ◽  
Vol 90 (2) ◽  
pp. 875-886 ◽  
Author(s):  
Iman Kavianinia ◽  
Paul G. Plieger ◽  
Nadia G. Kandile ◽  
David R.K. Harding

2021 ◽  
Vol 42 ◽  
pp. 102176
Author(s):  
Pummarin Khamdahsag ◽  
Dickson Y.S. Yan ◽  
Pongnapa Poompang ◽  
Nichapa Supannafai ◽  
Visanu Tanboonchuy

Sign in / Sign up

Export Citation Format

Share Document