scholarly journals Electrocardiographic versus echocardiographic left ventricular hypertrophy and sudden cardiac arrest in the community

Heart Rhythm ◽  
2014 ◽  
Vol 11 (6) ◽  
pp. 1040-1046 ◽  
Author(s):  
Kumar Narayanan ◽  
Kyndaron Reinier ◽  
Carmen Teodorescu ◽  
Audrey Uy-Evanado ◽  
Harpriya Chugh ◽  
...  
2017 ◽  
Vol 19 (1) ◽  
pp. 69-75 ◽  
Author(s):  
Cosmin Balan ◽  
Adrian View-Kim Wong

Catecholamines are entrenched in the management of shock states. A paradigm shift has pervaded the critical care arena in recent years acknowledging their propensity to cause harm and fuel a ‘death-spiral’. We present the case of a 21-year-old male following a witnessed out-of-hospital cardiac arrest who received high-quality cardiopulmonary resuscitation and standard advanced life support for refractory ventricular fibrillation until return of spontaneous circulation after 70 min. Early post-admission echocardiography revealed severe diffuse sub-basal left ventricular hypertrophy with dynamic mid-cavity obstruction and akinetic apical pouching. Within this context, a decatecholaminised strategy comprising a beta-blocker was used to augment the left ventricular end-diastolic volume and attain cardiovascular stability.


Author(s):  
Aneil Malhotra ◽  
Sanjay Sharma

The diagnosis of hypertrophic cardiomyopathy can be challenging in the athlete. A morphologically mild phenotype of the condition may mimic physiological left ventricular hypertrophy and requires careful evaluation of the athlete with an array of clinical tools. Correct interpretation of the results in such cases is crucial, as falsely labelling a young athlete with hypertrophic cardiomyopathy could curtail a flourishing career. Conversely, falsely attributing left ventricular hypertrophy to physiological adaptation in an individual with hypertrophic cardiomyopathy can increase their risk of exercise-associated sudden cardiac arrest. This chapter highlights a number of clinical methods that can be utilized to aid the sports physician when assessing such individuals and discusses historical and contemporary literature on hypertrophic cardiomyopathy in athletes.


2014 ◽  
Vol 19 (2) ◽  
pp. 11-15
Author(s):  
Steven L. Demeter

Abstract The fourth, fifth, and sixth editions of the AMA Guides to the Evaluation of Permanent Impairment (AMA Guides) use left ventricular hypertrophy (LVH) as a variable to determine impairment caused by hypertensive disease. The issue of LVH, as assessed echocardiographically, is a prime example of medical science being at odds with legal jurisprudence. Some legislatures have allowed any cause of LVH in a hypertensive individual to be an allowed manifestation of hypertensive changes. This situation has arisen because a physician can never say that no component of LVH was not caused by the hypertension, even in an individual with a cardiomyopathy or valvular disorder. This article recommends that evaluators consider three points: if the cause of the LVH is hypertension, is the examinee at maximum medical improvement; is the LVH caused by hypertension or another factor; and, if apportionment is allowed, then a careful analysis of the risk factors for other disorders associated with LVH is necessary. The left ventricular mass index should be present in the echocardiogram report and can guide the interpretation of the alleged LVH; if not present, it should be requested because it facilitates a more accurate analysis. Further, if the cause of the LVH is more likely independent of the hypertension, then careful reasoning and an explanation should be included in the impairment report. If hypertension is only a partial cause, a reasoned analysis and clear explanation of the apportionment are required.


VASA ◽  
2013 ◽  
Vol 42 (4) ◽  
pp. 284-291 ◽  
Author(s):  
Seong-Woo Choi ◽  
Hye-Yeon Kim ◽  
Hye-Ran Ahn ◽  
Young-Hoon Lee ◽  
Sun-Seog Kweon ◽  
...  

Background: To investigate the association between ankle-brachial index (ABI), left ventricular hypertrophy (LVH) and left ventricular mass index (LVMI) in a general population. Patients and methods: The study population consisted of 8,246 people aged 50 years and older who participated in the baseline survey of the Dong-gu Study conducted in Korea between 2007 and 2010. Trained research technicians measured LV mass using mode M ultrasound echocardiography and ABI using an oscillometric method. Results: After adjustment for risk factors and common carotid artery intima-media thickness (CCA-IMT) and the number of plaques, higher ABIs (1.10 1.19, 1.20 - 1.29, and ≥ 1.30) were significantly and linearly associated with high LVMI (1.10 - 1.19 ABI: β, 3.33; 95 % CI, 1.72 - 4.93; 1.20 - 1.29 ABI: β, 6.51; 95 % CI, 4.02 - 9.00; ≥ 1.30 ABI: β, 14.83; 95 % CI, 6.18 - 23.48). An ABI of 1.10 - 1.19 and 1.20 - 1.29 ABI was significantly associated with LVH (1.10 - 1.19 ABI: OR, 1.35; 95 % CI, 1.19 - 1.53; 1.20 - 1.29 ABI: OR, 1.59; 95 % CI, 1.31 - 1.92) and ABI ≥ 1.30 was marginally associated with LVH (OR, 1.73; 95 % CI, 0.93 - 3.22, p = 0.078). Conclusions: After adjustment for other cardiovascular variables and CCA-IMT and the number of plaques, higher ABIs are associated with LVH and LVMI in Koreans aged 50 years and older.


Sign in / Sign up

Export Citation Format

Share Document