scholarly journals Follow-up of children with sickle cell anemia screened with transcranial Doppler and enrolled in a primary prevention program of ischemic stroke

Author(s):  
Alessandra Palhoni Sabarense ◽  
Célia Maria Silva ◽  
Maristela Braga de Sousa Rodrigues Muniz ◽  
Marcos Borato Viana
Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 68-68 ◽  
Author(s):  
Janet L. Kwiatkowski ◽  
Julie Kanter ◽  
Heather J. Fullerton ◽  
Jenifer Voeks ◽  
Ellen Debenham ◽  
...  

Abstract Background: The Stroke Prevention Trial in Sickle Cell Anemia (STOP) and Optimizing Primary Stroke Prevention in Sickle Cell Anemia (STOP 2) established routine transcranial Doppler ultrasound (TCD) screening with indefinite chronic red cell transfusions (CRCT) for children with abnormal TCD as standard of care. To identify children at high-risk of stroke, annual TCD screening is recommended from ages 2 to 16 years, with more frequent monitoring if the result is not normal. A reduction in stroke incidence in children with SCD has been reported in several clinical series and analyses utilizing large hospital databases when comparing rates before and after the publication of the STOP study in 1998. We sought to determine the rate of first ischemic stroke in a multicenter cohort of children who had previously participated in the STOP and/or STOP 2 trials and to determine whether these strokes were screening or treatment failures. Subjects and Methods: Between 1995 and 2005, STOP and STOP 2 (STOP/2) were conducted at 26 sites in the US and Canada. These studies included 3,835 children, ages 2 to 16 y with SCD type SS or S-beta-0-thalassemia. Participation in STOP/2 ranged from a single screening TCD to randomization. STOP 2 also had an observational arm for children on CRCT for abnormal TCD whose TCD had not reverted to normal. The Post-STOP study was designed to follow-up the outcomes of children who participated in one or both trials. 19 of the 26 original study sites participated in Post-STOP, contributing a total of 3,539 (92%) of the STOP/2 subjects. After exit from STOP/2, these children received TCD screening and treatment according to local practices. Data abstractors visited each clinical site and obtained retrospective data from STOP/2 study exit to 2012-2014 (depending on site) including follow-up TCD and brain imaging results, clinical information, and laboratory results. Two vascular neurologists, blinded to STOP/2 status and prior TCD and neuroimaging results, reviewed source records to confirm all ischemic strokes, defined as a symptomatic cerebral infarction; discordant opinions were resolved through discussion. For the first Post-STOP ischemic stroke, prior TCD result and treatment history subsequently were analyzed. Results: Of the 3,539 subjects, follow-up data were available for 2,850 (81%). Twelve children who had a stroke during STOP or STOP2 were excluded from these analyses resulting in data on 2,838 subjects. The mean age at the start of Post-STOP was 10.5 y and mean duration of follow-up after exiting STOP/2 was 9.1 y. A total of 69 first ischemic strokes occurred in the Post-STOP observation period (incidence 0.27 per 100 pt years). The mean age at time of stroke was 14.4±6.2 (median 13.8, range 3.5-28.9) y. Twenty-five of the 69 patients (36%) had documented abnormal TCD (STOP/2 or Post-STOP) prior to the stroke; 15 (60%) were receiving CRCT and 9 (36%) were not (treatment data not available for 1 subject). Among the 44 subjects without documented abnormal TCD, 29 (66%) had not had TCD re-screen in the Post-STOP period prior to the event; 7 of these 29 (24%) were 16 y or older at the start of Post-STOP, which is beyond the recommended screening age. Four of the 44 (9%) patients had inadequate TCD in Post-STOP (1 to 10.7 y prior to event). Six (14%) had normal TCD more than a year before the event (1.2 - 4 y); all but one of these children were younger than 16 y at the time of that TCD. Only 5 (11%) had a documented normal TCD less than 1 year prior to the event. Conclusions: In the Post-STOP era, the rate of first ischemic stroke was substantially lower than that reported in the Cooperative Study of Sickle Cell Disease, prior to implementation of TCD screening. Many (39%) of the Post-STOP ischemic strokes were associated with a failure to re-screen according to current guidelines, while only 11% occurred in children who had had recent low-risk TCD. Among those known to be at high risk prior to stroke, treatment refusal or inadequate treatment may have contributed. While TCD screening and treatment are effective at reducing ischemic stroke in clinical practice, significant gaps in screening and treatment, even at sites experienced in the STOP protocol, remain to be addressed. Closing these gaps should provide yet further reduction of ischemic stroke in SCD. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3736-3736
Author(s):  
Gisele S. Silva ◽  
Maria S. Figueiredo ◽  
Perla Vicari ◽  
Airton R. Massaro ◽  
Adauto Castelo Filho ◽  
...  

Abstract Sickle cell anemia (SCA) may cause a variety of neurological complications, including stroke and headaches. Stroke occurs in up to 9% of children with SCA, and transcranial Doppler (TCD) studies have demonstrated that increased velocities are related to higher stroke risk. Throbbing headache occurs in SCA but its cause, frequency, and relationship to TCD velocities have received little attention. On the other hand, there are few TCD studies in adult patients. Our aims were: 1) to describe the main features of TCD in adult SCA patients, and 2) to investigate if there were correlation between TCD features and presence of headache. TCD was performed in 56 adult SCA patients (≥ 16 years old) and in 56 healthy individuals (HI), matched by age and race. There were 6 patients with a remote history of stroke but none were on chronic transfusion. The SCA group was submitted to a neurological evaluation and specifically asked about the occurrence of headache and its characteristics. The highest flow velocity (maxFV) recorded for each artery was considered the most representative. We analyzed the frequency of FV asymmetry (side-to-side difference > 20%) and focal FV changes. The mean maxFV was significantly higher in patients (117.7 ± 21.6 cm/s) than in HI (72.45 ± 11.48 cm/s) (p<0.005). Only one patient had maxFV higher than 170 cm/s. The frequencies of asymmetry and of focal FV changes were significantly higher in SCA. Forty-one patients (73.2%) reported having headaches. Twenty-eight patients (50%) had severe (= 5 for pain intensity at a 1–10 scale) and frequent headaches (at least once a month). This group of patients presented TCD velocities significantly higher than patients without or with milder headaches (p=0.035). In conclusion, TCD maxFV was significantly higher in adult patients with SCA than HI, however, only one patient was considered at risk of stroke according to TCD criteria described in children. FV asymmetry and focal FV changes may be markers for arterial disease in adult SCA patients, and need to be further confirmed by neuroimaging and clinical follow up studies. The patients with severe headaches presented TCD velocities significantly higher than patients without or with milder headaches, but this finding needs to be confirmed by more and larger studies.


2017 ◽  
Vol 25 ◽  
pp. 42-50 ◽  
Author(s):  
Luise Adametz ◽  
Felicitas Richter ◽  
Bernhard Strauss ◽  
Mario Walther ◽  
Katharina Wick ◽  
...  

2014 ◽  
Vol 36 (1) ◽  
pp. E12 ◽  
Author(s):  
Benjamin C. Kennedy ◽  
Michael M. McDowell ◽  
Peter H. Yang ◽  
Caroline M. Wilson ◽  
Sida Li ◽  
...  

Object Pediatric patients with sickle cell anemia (SCA) carry a significant risk of developing moyamoya syndrome (MMS) and brain ischemia. The authors sought to review the safety and efficacy of pial synangiosis in the treatment of MMS in children with SCA by performing a comprehensive review of all previously reported cases in the literature. Methods The authors retrospectively reviewed the clinical and radiographic records in 17 pediatric patients with SCA treated at the Morgan Stanley Children's Hospital of New York (MSCHONY) who developed radiological evidence of MMS and underwent pial synangiosis between 1996 and 2012. The authors then added any additional reported cases of pial synangiosis for this population in the literature for a combined analysis of clinical and radiographic outcomes. Results The combined data consisted of 48 pial synangiosis procedures performed in 30 patients. Of these, 27 patients (90%) presented with seizure, stroke, or transient ischemic attack, whereas 3 (10%) were referred after transcranial Doppler screening. At the time of surgery, the median age was 12 years. Thirteen patients (43%) suffered an ischemic stroke while on chronic transfusion therapy. Long-term follow-up imaging (MR angiography or catheter angiography) at a mean of 25 months postoperatively was available in 39 (81%) treated hemispheres. In 34 (87%) of those hemispheres there were demonstrable collateral vessels on imaging. There were 4 neurological events in 1590 cumulative months of follow-up, or 1 event per 33 patient-years. In the patients in whom complete data were available (MSCHONY series, n = 17), the postoperative stroke rate was reduced more than 6-fold from the preoperative rate (p = 0.0003). Conclusions Pial synangiosis in patients with SCA, MMS, and brain ischemia appears to be a safe and effective treatment option. Transcranial Doppler and/or MRI screening in asymptomatic patients with SCA is recommended for the diagnosis of MMS.


2016 ◽  
Vol 63 (6) ◽  
pp. 1046-1049 ◽  
Author(s):  
André Rolim Belisário ◽  
Rahyssa Rodrigues Sales ◽  
Nayara Evelin Toledo ◽  
Cibele Velloso-Rodrigues ◽  
Célia Maria Silva ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 562-562
Author(s):  
Janet L. Kwiatkowski ◽  
Heather Fullerton ◽  
Jennifer Voeks ◽  
Lynette Brown ◽  
Ellen Debenham ◽  
...  

Abstract Background: The Stroke Prevention Trial in Sickle Cell Anemia (STOP) and Optimizing Primary Stroke Prevention in Sickle Cell Anemia (STOP 2) study established routine transcranial Doppler ultrasound (TCD) screening with indefinite transfusions for children with abnormal TCD as standard of care. Children with normal TCD studies have the lowest risk of stroke of ~0.5-1% per year (y). Annual TCD screening is usually recommended for these children to detect possible subsequent conversion to high risk. We sought to determine the frequency of TCD screening utilized in “real world” clinical practice and the TCD outcomes for children with prior normal TCD. Subjects and Methods: During STOP and STOP2 (STOP/2), 3,837 children, ages 2 to 16 y with sickle cell disease type SS or S-Beta-0-thalassemia underwent screening TCD. The Post-STOP study was designed to follow-up the outcomes of children who were screened for or participated in one or both of these randomized trials. 19 of the 26 original study sites participated in Post-STOP, contributing a total of 3,541 (92%) of the STOP/2 subjects. After exit from STOP/2, these children received TCD screening and treatment according to local practices. Data abstractors visited each clinical site and obtained retrospective data from STOP/2 study exit to 2012-2014 (depending on site) on follow-up TCD results and clinical information using standard data collection forms. The rates of TCD re-screening and the proportion of children who converted to abnormal TCD were calculated. Factors associated with conversion to abnormal TCD were assessed. Results: Of the 3,541 subjects, follow-up data were available for 2,838 (80%). The mean age at the last TCD study obtained in STOP/2 was 9.5 y and the mean age at last follow-up in Post-STOP was 19.6 y. The mean duration of follow-up after exiting STOP/2 was 9.2 y. Subjects were classified by their worst TCD in STOP/2: the TCD was normal in 1,814 (64%), conditional in 479 (17%), abnormal in 357 (13%) and inadequate 188 (7%). Among the 1,814 children with only normal studies in STOP/2, follow-up TCD screening was obtained in the Post-STOP era on 842 (46%) at a median rate of 0.28 TCD studies/y (range, 0.05-3.04/y). Among these children, 26 (3.1%) developed an abnormal TCD at a median of 11.5 y (2.2-18.2 y) from the last STOP/2 study, while 77.5% still had normal TCD at a median of 10.7 y (0.7-18.3 y) from last STOP/2 study. The worst follow-up TCD classification for this group with prior normal TCD was conditional in 9.7% and inadequate in 9.6%. Among those that converted from prior normal to abnormal TCD, 12 had an interval conditional study (at median 2.8 y, 0.98-9.2 y) while 14 children converted from normal to abnormal at a median of 4.2 y (1.4-12.7 y) without documented interval conditional study. Children who developed abnormal TCD were younger at STOP/2 study exit (4.9 vs. 7.8 y, p<0.001) and had higher TCD velocity at their last STOP/2 TCD study (154 vs. 136 cm/s, p<0.001) than children whose TCD remained normal. There was no significant difference between the time interval from the last STOP/2 TCD and the first Post-STOP TCD in these 2 groups. Conclusions: In clinical practice, follow-up TCD for children with prior normal TCD was performed less frequently than the generally recommended annual basis. Among children re-screened, the risk of conversion to abnormal TCD was relatively low, but re-screening with TCD identified a subset of at-risk children who could benefit from transfusions to prevent a potentially devastating outcome. Predictors of conversion to abnormal TCD included younger age and prior TCD velocity in the high normal range. Disclosures Adams: Novartis: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document