B-cell–T-cell activation and interaction in common variable immunodeficiency

2010 ◽  
Vol 71 (4) ◽  
pp. 355-362 ◽  
Author(s):  
Nima Rezaei ◽  
James B. Wing ◽  
Asghar Aghamohammadi ◽  
Jennifer Carlring ◽  
Andrew Lees ◽  
...  
1987 ◽  
Vol 44 (2) ◽  
pp. 206-218 ◽  
Author(s):  
Walter Fiedler ◽  
Karl W. Sykora ◽  
Karl Welte ◽  
Jonathan E. Kolitz ◽  
Charlotte Cunningham-Rundles ◽  
...  

Author(s):  
Roos-Marijn Berbers ◽  
M. Marlot van der Wal ◽  
Joris M. van Montfrans ◽  
Pauline M. Ellerbroek ◽  
Virgil A. S. H. Dalm ◽  
...  

Abstract Purpose Immune dysregulation complications cause significant morbidity and mortality in common variable immunodeficiency (CVID), but the underlying pathophysiology is poorly understood. While CVID is primarily considered a B-cell defect, resulting in the characteristic hypogammaglobulinemia, T-cells may also contribute to immune dysregulation complications. Here, we aim to further characterize T-cell activation and regulation in CVID with immune dysregulation (CVIDid). Methods Flow cytometry was performed to investigate T-cell differentiation, activation and intracellular cytokine production, negative regulators of immune activation, regulatory T-cells (Treg), and homing markers in 12 healthy controls, 12 CVID patients with infections only (CVIDio), and 20 CVIDid patients. Results Both CD4 + and CD8 + T-cells in CVIDid showed an increased activation profile (HLA-DR + , Ki67 + , IFNγ +) when compared to CVIDio, with concomitant upregulation of negative regulators of immune activation PD1, LAG3, CTLA4, and TIGIT. PD1 + and LAG3 + subpopulations contained equal or increased frequencies of cells with the capacity to produce IFNγ, Ki67, and/or GzmB. The expression of PD1 correlated with serum levels of CXCL9, 10, and 11. Treg frequencies were normal to high in CVIDid, but CVIDid Tregs had reduced CTLA-4 expression, especially on CD27 + effector Tregs. Increased migratory capacity to inflamed and mucosal tissue was also observed in CVIDid T-cells. Conclusion CVIDid was characterized by chronic activation of peripheral T-cells with preserved inflammatory potential rather than functional exhaustion, and increased tissue migratory capacity. While Treg numbers were normal in CVIDid Tregs, low levels of CTLA-4 indicate possible Treg dysfunction. Combined studies of T-cell dysfunction and circulating inflammatory proteins may direct future treatment strategies.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A744-A744
Author(s):  
Tingting Zhong ◽  
Zhaoliang Huang ◽  
Xinghua Pang ◽  
Na Chen ◽  
Xiaoping Jin ◽  
...  

BackgroundCD73 (ecto-5’-nucleotidase) is an ecto-nucleotidase that dephosphorylate AMP to form adenosine. Activation of adenosine signaling pathway in immune cells leads to the suppression of effector functions, down-regulate macrophage phagocytosis, inhibit pro-inflammatory cytokine release, as well as yield aberrantly differentiated dendritic cells producing pro-tumorigenic molecules.1 In the tumor microenvironment, adenosinergic negative feedback signaling facilitated immune suppression is considered an important mechanism for immune evasion of cancer cells.2 3 Combination of CD73 and anti-PD-1 antibody has shown promising activity in suppressing tumor growth. Hence, we developed AK119, an anti- human CD73 monoclonal antibody, and AK123,a bi-specific antibody targeting both PD-1 and CD73 for immune therapy of cancer.MethodsAK119 is a humanized antibody against CD73 and AK123 is a tetrameric bi-specific antibody targeting PD-1 and CD73. Binding assays of AK119 and AK123 to antigens, and antigen expressing cells were performed by using ELISA, Fortebio, and FACS assays. In-vitro assays to investigate the activity of AK119 and AK123 to inhibit CD73 enzymatic activity in modified CellTiter-Glo assay, to induce endocytosis of CD73, and to activate B cells were performed. Assay to evaluate AK123 activity on T cell activation were additionally performed. Moreover, the activities of AK119 and AK123 to mediate ADCC, CDC in CD73 expressing cells were also evaluated.ResultsAK119 and AK123 could bind to its respective soluble or membrane antigens expressing on PBMCs, MDA-MB-231, and U87-MG cells with high affinity. Results from cell-based assays indicated that AK119 and AK123 effectively inhibited nucleotidase enzyme activity of CD73, mediated endocytosis of CD73, and induced B cell activation by upregulating CD69 and CD83 expression on B cells, and showed more robust CD73 blocking and B cell activation activities compared to leading clinical candidate targeting CD73. AK123 could also block PD-1/PD-L1 interaction and enhance T cell activation.ConclusionsIn summary, AK119 and AK123 represent good preclinical biological properties, which support its further development as an anti-cancer immunotherapy or treating other diseases.ReferencesDeaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 2007; 204:1257–65.Huang S, Apasov S, Koshiba M, Sitkovsky M. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood. 1997; 90:1600–10.Novitskiy SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y, Tikhomirov OY, Blackburn MR, Biaggioni I,Carbone DP, Feoktistov I, et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 2008; 112:1822–31.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A119-A119
Author(s):  
Lu Bai ◽  
Kevin Nishimoto ◽  
Mustafa Turkoz ◽  
Marissa Herrman ◽  
Jason Romero ◽  
...  

BackgroundAutologous chimeric antigen receptor (CAR) T cells have been shown to be efficacious for the treatment of B cell malignancies; however, widespread adoption and application of CAR T cell products still face a number of challenges. To overcome these challenges, Adicet Bio is developing an allogeneic γδ T cell-based CAR T cell platform, which capitalizes on the intrinsic abilities of Vδ1 γδ T cells to recognize and kill transformed cells in an MHC-unrestricted manner, to migrate to epithelial tissues, and to function in hypoxic conditions. To gain a better understanding of the requirements for optimal intratumoral CAR Vδ1 γδ T cell activation, proliferation, and differentiation, we developed a three-dimensional (3D) tumor spheroid assay, in which tumor cells acquire the structural organization of a solid tumor and establish a microenvironment that has oxygen and nutrient gradients. Moreover, through the addition of cytokines and/or tumor stromal cell types, the spheroid microenvironment can be modified to reflect hot or cold tumors. Here, we report on the use of a 3D CD20+ Raji lymphoma spheroid assay to evaluate the effects of IL-2 and IL-15, positive regulators of T cell homeostasis and differentiation, on the proliferative and antitumor capacities of CD20 CAR Vδ1 γδ T cells.MethodsMolecular, phenotypic, and functional profiling were performed to characterize the in vitro dynamics of the intraspheroid CD20 CAR Vδ1 γδ T cell response to target antigen in the presence of IL-2, IL-15, or no added cytokine.ResultsWhen compared to no added cytokine, the addition of IL-2 or IL-15 enhanced CD20 CAR Vδ1 γδ T cell activation, proliferation, survival, and cytokine production in a dose-dependent manner but were only able to alter the kinetics of Raji cell killing at low effector to target ratios. Notably, differential gene expression analysis using NanoString nCounter® Technology confirmed the positive effects of IL-2 or IL-15 on CAR-activated Vδ1 γδ T cells as evidenced by the upregulation of genes involved in activation, cell cycle, mitochondrial biogenesis, cytotoxicity, and cytokine production.ConclusionsTogether, these results not only show that the addition of IL-2 or IL-15 can potentiate CD20 CAR Vδ1 γδ T cell activation, proliferation, survival, and differentiation into antitumor effectors but also highlight the utility of the 3D spheroid assay as a high throughput in vitro method for assessing and predicting CAR Vδ1 γδ T cell activation, proliferation, survival, and differentiation in hot and cold tumors.


2005 ◽  
Vol 55 (5) ◽  
pp. 503-514 ◽  
Author(s):  
Bernd Schlereth ◽  
Cornelia Quadt ◽  
Torsten Dreier ◽  
Peter Kufer ◽  
Grit Lorenczewski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document