b cell depletion
Recently Published Documents


TOTAL DOCUMENTS

698
(FIVE YEARS 152)

H-INDEX

66
(FIVE YEARS 7)

2022 ◽  
pp. 10.1212/CPJ.0000000000001147
Author(s):  
Alexandra Galati ◽  
Thomas McElrath ◽  
Riley Bove

AbstractPurposeof Review: There is considerable heterogeneity in the use of B cell depletion in women of childbearing age, likely driven at least in part by the discrepancy between the product labels and what is known about the physiology of IgG1, including breastmilk and placental transfer.Recent Findings:We provide practical considerations on the use of this medication class in women of childbearing potential. We discuss pre-pregnancy planning including vaccinations, safety of B cell depletion during pregnancy as well as postpartum considerations including breastfeeding.Summary:B cell depleting monoclonal antibodies have shown to be effective for pre-pregnancy and postpartum prevention of inflammatory activity in multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). B cell depleting therapies are large IgG1 monoclonal antibodies which have minimal transfer across the placenta and into breastmilk. Consideration of risks and benefits of these therapies should be considered in counseling women planning pregnancy and postpartum.


2022 ◽  
Vol 226 (1) ◽  
pp. S270
Author(s):  
Dylan Solise ◽  
Nathan Campbell ◽  
Usman Ashraf ◽  
owen herrock ◽  
Sarah Fitzgerald ◽  
...  

Author(s):  
Samantha Rivet ◽  
David Pellerin ◽  
Rami Massie ◽  
Michael Stein ◽  
Liam Durcan ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Merlin Wennmann ◽  
Simone Kathemann ◽  
Kristina Kampmann ◽  
Sinja Ohlsson ◽  
Anja Büscher ◽  
...  

Background: Rituximab (RTX) is used in cancer therapy as well as in the treatment of autoimmune diseases and alloimmune responses after transplantation. It depletes the disease-causing B cells by binding to the CD (cluster of differentiation) 20 antigen. We evaluate different pediatric treatment protocols (via fixed treatment schedule, B cell- or symptom-controlled) and their therapeutic effects.Methods: Demographic information, clinical and laboratory characteristics, and special laboratory values such as immunoglobulin G (IgG), CD19 positive B cells and Epstein-Barr viral load were retrospectively analyzed in children treated with RTX between 2008 and 2016.Results: Seventy-six patients aged 1 to 19 (median 13) years were treated with 259 RTX infusions. The spectrum of diseases was very heterogeneous. RTX led to a complete depletion of the B cells. The reconstitution time varied between patients and was dependent on the application schedule (median 11.8 months). Fourteen out of 27 (52%) patients developed hypogammaglobulinaemia. The risk of IgG deficiency was 2.6 times higher in children under 4 years of age than in olderones. In the last group IgG deficiency developed in only 38% of the cases (n = 8). Recurrent and severe infections were observed each in 11/72 (15%) patients. Treatment-related reactions occurred in 24/76 (32%) cases; however, treatment had to be discontinued in only 1 case. In 16/25 (76%), the Epstein-Barr viral load dropped below the detection limit after the first RTX infusion.Conclusion: RTX is an effective and well-tolerated drug for the treatment of oncological diseases as well as autoimmune and alloimmune conditions in children. B cell depletion and reconstitution varies both intra- und interindividually, suggesting that symptom-oriented and B cell-controlled therapy may be favorable. Treatment-related reactions, IgG deficiency and infections must be taken into account.


JAMA Oncology ◽  
2021 ◽  
Author(s):  
Kalpana Parvathaneni ◽  
Kyabeth Torres-Rodriguez ◽  
Wenzhao Meng ◽  
Wei-Ting Hwang ◽  
Noelle Frey ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 196-196
Author(s):  
Adrian M Shields ◽  
Srinivasan Venkatachalam ◽  
Shankara Paneesha ◽  
Mark Ford ◽  
Tom Sheeran ◽  
...  

Abstract Background: Anti-CD20 B cell depleting agents are amongst the most commonly used immunotherapeutics employed in the treatment of haematological malignancy and autoimmune diseases. By inducing peripheral B cell aplasia, anti-CD20 depleting agents are hypothesised to significantly impair serological responses to neoantigens, including the SARS-CoV-2 spike glycoprotein within SARS-CoV-2 vaccines. Seropositivity following SARS-CoV-2 is the strongest, measurable correlate of protection from severe COVID-19. Understanding the kinetics of B cell reconstitution and vaccine responsiveness following exposure to B cell depleting agents is essential to maximise vaccine efficacy in patients vulnerable to severe COVID-19. Methods: 80 patients with underlying haematological malignancy and 38 patients with underlying rheumatological disease previously treated with anti-CD20 B cell depleting agents were studied following their second dose of a SARS-CoV-2 vaccine (median time to sampling: 46.5d, IQR: 33.8-63.3). Lymphocyte subset (CD4, CD8, CD19, CD56/16) enumeration was performed using 6 colour flow cytometry (BD Trucount). Total anti-SARS-CoV-2 spike glycoprotein antibodies were measured by enzyme-linked immunosorbent assay (The Binding Site, Human Anti-IgG/A/M SARS-CoV-2-ELISA). The relationship between immune reconstitution following B cell depletion and vaccine responsiveness was explored. Results: In the haematology cohort (median age 70y, IQR 60.3-76.0, 62.5% male), overall seropositivity following vaccination was 60.0%. Individuals on active chemotherapy had significantly lower seroprevalence than those vaccinated following the completion of chemotherapy (22.7% vs 74.1%, p<0.0001). In the rheumatology cohort (median age 65y, IQR 58.3-70.8, 39.9% male), overall seropositivity was 69.4%. In both cohorts, vaccine non-responders had significantly smaller populations of peripheral CD19+ B cells (haematology: 0.20 vs 0.02 x10 9/L, p=0.004, rheumatology: 0.07 vs 0.01 x10 9/L, p=0.03). The magnitude of the antibody response following vaccination did not differ between recipients of Tozinameran and Vaxzeveria in either cohort. Vaccine responsiveness was lower in the first 6 months following B cell depletion therapy; 42.9% in the haematology cohort and 33.3% in the rheumatology cohort, increasing to 100% and 75% respectively in individuals receiving their second dose 6-12 months following B cell depletion (Figure 1). B cell reconstitution in the 7-12 month window following B cell depletion was faster in haematology compared to rheumatology patients (77.8% v 22.2% achieving normal B cell count, p=0.005) and associated with improved vaccine responsiveness. However, persistent immunodeficiency occurred in some haematology patients following completion of treatment: 25% of patients who had completed therapy at least 36 months previously failed to respond to vaccination. In this cohort of vaccine non-responders, 83.3% of individuals had B cell numbers within the normal range. These patients had all previously been treated for follicular lymphoma suggesting a specific mechanism for long-range secondary immunodeficiency in these patients. Conclusions: Serological responsiveness to SARS-CoV-2 vaccines is poor during active chemotherapy for haematological malignancy and in the first 6 months following B cell depletion, regardless of underlying disease. Vaccine responsiveness significantly improves in the 7-12 month window following B cell depletion. Compared to haematology patients, B cell reconstitution is slower in rheumatology patients and associated with reduced vaccine responsiveness, possibly due to the use of additional concurrent disease-modifying anti-rheumatic therapies. Furthermore, long-term secondary immunodeficiency occurs in a minority of haematology patients. To maximise the efficacy from SARS-CoV-2 booster vaccination and optimal utilisation of available vaccine doses, immunisations should be delivered at least 6 months following the administration of anti-CD20 depleting drugs. Figure 1: Kinetics of return of vaccine responsiveness following B cell depletion in haematology and rheumatology patients. Figure 1 Figure 1. Disclosures Paneesha: Roche: Honoraria; Janssen: Honoraria; Gilead: Honoraria; Bristol Myers Squibb: Honoraria; AbbVie: Honoraria; Celgene: Honoraria. Drayson: Abingdon Health: Current holder of individual stocks in a privately-held company.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2769-2769
Author(s):  
Justine Cunningham ◽  
Sundeep Chandra ◽  
Akinola Emmanuel ◽  
Allyse Mazzarelli ◽  
Carmela Passaro ◽  
...  

Abstract Introduction: Ex vivo manufactured chimeric antigen receptor (CAR) T cell therapies are highly effective for treating B cell malignancies. However, the complexity, cost and time required to manufacture CAR T cells limits access. To overcome conventional ex vivo CAR T limitations, a novel gene therapy platform has been developed that can deliver CAR transgenes directly to T cells through systemic administration of a fusosome, an engineered, target-directed novel paramyxovirus-based integrating vector that binds specific cell surface receptors for gene delivery through membrane fusion. Here, we demonstrate that systemic administration of a CD8a-targeted, integrating vector envelope (i.e., fusogen) encoding an anti-CD20 CAR into Southern pig-tail macaques (M. nemestrina), which is a species permissive to the integrating vector-mediated transduction, results in T cell transduction and B cell depletion with no treatment-related toxicities. Methods: CD8a-specific single chain variable fragments (scFvs) were generated and measured for target specificity versus non-CD8-expressing cells in vitro. Cross-reactivity of the CD8a-specific fusogen for human and nemestrina T cells was confirmed in vitro. Targeted fusogens were then used to pseudotype integrating vector expressing an anti-CD20 CAR containing the 4-1BB and CD3zeta signaling domains (CD8a-anti-CD20CAR). Transduction and B cell killing was confirmed on human and nemestrina PBMCs. To evaluate in vivo activity, normal, healthy nemestrina macaques were treated with a single dose of CD8a-targeted anti-CD20 CAR fusosome (n=6) or saline (n=2) via intravenous infusion at 10mL/kg/hr for 1-hour and evaluated for up to 52 days for evidence of adverse effects, B cell depletion, CAR-mediated cytokine production, CAR T cell persistence and vector biodistribution using ddPCR and anti-CD20CAR transgene by RT-ddPCR to detect transgene levels. Histopathology of several organs and immunohistochemistry for CD3 and CD20 on lymph nodes, spleen, and bone marrow were performed at termination (days 35 and 52). Tolerability of the treatment was assessed by body weight, body temperature, neurological exams, serum chemistry panel, and complete blood counts pre-dose and post-dose up to 52 days. Results: The CD8a-targeted fusogen demonstrated CD8a-specificity versus human CD8 negative cell lines, and cross-reactivity and transduction efficiency in nemestrina PBMCs in vitro. Compared to a control vector (GFP), anti-CD20CAR-modified T cells showed a dose-dependent depletion of B cells using in vitro assays. Following infusion of CD8a-anti-CD20CAR fusosomes into macaques, pharmacological activity in peripheral blood was detected by a reduction of B cells in 4 of 6 animals after 7 to 10 days. Two animals showed persistent B cell depletion until study termination, with two others showing a temporary response. The presence of vector copy could be detected in the peripheral blood of all treated animals between days 3 and 10, and in isolated spleen cells in 5 of 6 animals. All control animals (saline) were negative for vector. RT-ddPCR mRNA expression similarly revealed the presence of anti-CD20CAR transcripts in isolated spleen cells from treated animals; no expression was detected in tissues from control animals. Elevations in inflammatory cytokines could be detected in the serum of treated animals between days 3 and 14. Fusosome treatment was well-tolerated in all animals with no evidence of adverse effects. Moreover, T cell transduction and B cell depletion was not associated with cytokine-related toxicities, and blood chemistry and histopathology were within normal limits. Conclusion: These data obtained in an immunologically competent animal demonstrate the proof-of-concept that systemic administration of a CD8a-anti-CD20CAR fusosome can specifically transduce T cells in vivo without pre-conditioning or T cell activation, resulting in B cell depletion in the absence of vector- or CAR T-related toxicities. Therefore, fusosome technology represents a novel therapeutic opportunity to treat patients with B cell malignancies and potentially overcome some of the treatment barriers that exist with conventional CAR T therapies. Disclosures Cunningham: Sana Biotechnology: Current Employment. Chandra: Sana Biotechnology: Current Employment. Emmanuel: Sana Biotechnology: Current Employment. Mazzarelli: Sana Biotechnology: Current Employment. Passaro: Sana Biotechnology: Current Employment. Baldwin: Sana Biotechnology: Current Employment. Nguyen-McCarty: Sana Biotechnology: Current Employment. Rocca: Sana Biotechnology: Current Employment. Joyce: Sana Biotechnology: Current Employment. Kim: Sana Biotechnology: Current Employment. Vagin: Sana Biotechnology: Current Employment. Kaczmarek: Sana Biotechnology: Current Employment. Chavan: Sana Biotechnology: Current Employment. Jewell: Sana Biotechnology: Current Employment. Lipsitz: Sana Biotechnology: Current Employment. Shamashkin: Sana Biotechnology: Current Employment. Hlavaty: Sana Biotechnology: Current Employment. Rodriguez: Sana Biotechnology: Current Employment. Co: Sana Biotechnology: Current Employment. Cruite: Sana Biotechnology: Current Employment. Ennajdaoui: Sana Biotechnology: Current Employment. Duback: Sana Biotechnology: Current Employment. Elman: Sana Biotechnology: Current Employment. Amatya: Sana Biotechnology: Current Employment. Harding: Sana Biotechnology: Current Employment. Lyubinetsky: Sana Biotechnology: Current Employment. Patel: Sana Biotechnology: Current Employment. Pepper: Sana Biotechnology: Current Employment. Ruzo: Sana Biotechnology: Current Employment. Iovino: Sana Biotechnology: Current Employment. Varghese: Sana Biotechnology: Current Employment. Foster: Sana Biotechnology: Current Employment. Gorovits: Sana Biotechnology: Current Employment. Elpek: Sana Biotechnology: Current Employment. Laska: Sana Biotechnology: Current Employment. McGill: Sana Biotechnology: Current Employment. Shah: Sana Biotechnology: Current Employment. Fry: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company. Dambach: Sana Biotechnology: Current Employment.


2021 ◽  
Author(s):  
Ching-Yun Hsieh ◽  
Ming-Yu Lien ◽  
Chen-Yuan Lin ◽  
Wen-Jyi Lo ◽  
Chung-Hung Hua ◽  
...  

Abstract BackgroundThe treatment of recurrent or metastatic head and neck squamous-cell carcinoma (R/M HNSCC) remains challenging. Preclinical studies revealed that B cell depletion could modulate the microenvironment and overcome chemoresistance. We conducted a phase I study to evaluate the feasibility and safety of B cell depletion using the anti-CD20 antibody rituximab to treat HNSCC.MethodsTen patients were enrolled into two protocols. The first four patients treated using protocol 1 received rituximab 1000 mg on days −14 and −7, followed by gemcitabine/cisplatin every 3 weeks, and rituximab was administered every 6 months thereafter. Because of disease hyperprogression, protocol 1 was amended to protocol 2, which consisted of the concomitant administration of rituximab 375 mg/m2 and gemcitabine/cisplatin every 3 weeks. Another six patients were enrolled and treated using protocol 2.ResultsThree patients treated using protocol 1 exhibited rapid disease progression, and the remaining patient could not undergo evaluation after rituximab treatment. Conversely, no unpredicted harm was observed in the six patients treated using protocol 2. Among these patients, one achieved complete response, and two had partial responses. The disease-free durations in these patients were 7.0, 6.2, and 7.1 months, respectively. Immune cell analysis revealed a higher ratio of cytotoxic T cells to regulatory T cells in responders than in non-responders.ConclusionsB cell depletion using rituximab alone in patients with HNSCC can cause hyperprogressive disease. Contrarily, the co-administration of rituximab and cisplatin/gemcitabine was feasible and safe.Trial registration:ClinicalTrials.gov Identifier: NCT04361409, 24/April/2020, retrospectively registered, https://clinicaltrials.gov/ct2/show/study/NCT04361409


Sign in / Sign up

Export Citation Format

Share Document