scholarly journals Application of an iterative source localization strategy at a chlorinated solvent site

2021 ◽  
pp. 100111
Author(s):  
E. Essouayed ◽  
T. Ferré ◽  
G. Cohen ◽  
N. Guiserix ◽  
O. Atteia
2016 ◽  
Vol 24 (6) ◽  
pp. 446-463 ◽  
Author(s):  
Mansoor Shaukat ◽  
Mandar Chitre

In this paper, the role of adaptive group cohesion in a cooperative multi-agent source localization problem is investigated. A distributed source localization algorithm is presented for a homogeneous team of simple agents. An agent uses a single sensor to sense the gradient and two sensors to sense its neighbors. The algorithm is a set of individualistic and social behaviors where the individualistic behavior is as simple as an agent keeping its previous heading and is not self-sufficient in localizing the source. Source localization is achieved as an emergent property through agent’s adaptive interactions with the neighbors and the environment. Given a single agent is incapable of localizing the source, maintaining team connectivity at all times is crucial. Two simple temporal sampling behaviors, intensity-based-adaptation and connectivity-based-adaptation, ensure an efficient localization strategy with minimal agent breakaways. The agent behaviors are simultaneously optimized using a two phase evolutionary optimization process. The optimized behaviors are estimated with analytical models and the resulting collective behavior is validated against the agent’s sensor and actuator noise, strong multi-path interference due to environment variability, initialization distance sensitivity and loss of source signal.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 520 ◽  
Author(s):  
Thomas Wiedemann ◽  
Achim Lilienthal ◽  
Dmitriy Shutin

In disaster scenarios, where toxic material is leaking, gas source localization is a common but also dangerous task. To reduce threats for human operators, we propose an intelligent sampling strategy that enables a multi-robot system to autonomously localize unknown gas sources based on gas concentration measurements. This paper discusses a probabilistic, model-based approach for incorporating physical process knowledge into the sampling strategy. We model the spatial and temporal dynamics of the gas dispersion with a partial differential equation that accounts for diffusion and advection effects. We consider the exact number of sources as unknown, but assume that gas sources are sparsely distributed. To incorporate the sparsity assumption we make use of sparse Bayesian learning techniques. Probabilistic modeling can account for possible model mismatch effects that otherwise can undermine the performance of deterministic methods. In the paper we evaluate the proposed gas source localization strategy in simulations using synthetic data. Compared to real-world experiments, a simulated environment provides us with ground truth data and reproducibility necessary to get a deeper insight into the proposed strategy. The investigation shows that (i) the probabilistic model can compensate imperfect modeling; (ii) the sparsity assumption significantly accelerates the source localization; and (iii) a-priori advection knowledge is of advantage for source localization, however, it is only required to have a certain level of accuracy. These findings will help in the future to parameterize the proposed algorithm in real world applications.


Author(s):  
Guangda Lu ◽  
Qiuyue Zhang ◽  
Tongtong Qie ◽  
Qihui Feng

Sign in / Sign up

Export Citation Format

Share Document