Effect of Glucopon 215 on cell surface properties of Pseudomonas stutzeri and diesel oil biodegradation

2015 ◽  
Vol 104 ◽  
pp. 129-135 ◽  
Author(s):  
Ewa Kaczorek ◽  
Wojciech Smułek ◽  
Agnieszka Zgoła-Grześkowiak ◽  
Katarzyna Bielicka-Daszkiewicz ◽  
Andrzej Olszanowski
2011 ◽  
Vol 34 (5) ◽  
pp. 857-862 ◽  
Author(s):  
Ewa Kaczorek ◽  
Teofil Jesionowski ◽  
Anna Giec ◽  
Andrzej Olszanowski

2020 ◽  
Vol 18 (2) ◽  
pp. 677-686
Author(s):  
Agata Zdarta ◽  
Wojciech Smułek ◽  
Amanda Pacholak ◽  
Beata Dudzińska-Bajorek ◽  
Ewa Kaczorek

Abstract Purpose Despite wide research on bioremediation of hydrocarbon-contaminated soil, the mechanisms of surfactant-enhanced bioavailability of the contaminants are still unclear. The presented study was focused on the in-depth description of relationships between hydrocarbons, bacteria, and surfactants. In order to that, the biodegradation experiments and cell viability measurements were conducted, and the properties of cell surface were characterized. Methods MTT assay was employed to measure plant extracts toxicity to microbes. Then, membrane permeability changes were evaluated, followed by diesel oil biodegradation in the presence of surfactants measurements by GCxGC-TOFMS and PCR-RAPD analysis. Results Our study undoubtedly proves that different surfactants promote assimilation of different groups of hydrocarbons and modify cell surface properties in different ways. Increased biodegradation of diesel oil was observed when cultures with Acinetobacter calcoaceticus M1B were supplemented with Saponaria officinalis and Verbascum nigrum extracts. Interestingly, these surfactants exhibit different influences on cell surface properties and their viability in contrast to the other surfactants. Moreover, the preliminary analyses have shown changes in the genome caused by exposure to surfactants. Conclusions The results indicated that the benefits of surfactant use may be related to deep modification at the omics level, not only that of cell surface properties and confirms the complexity of the interactions between bacterial cells, pollutants and surfactants.


Chemosphere ◽  
2013 ◽  
Vol 90 (2) ◽  
pp. 471-478 ◽  
Author(s):  
Ewa Kaczorek ◽  
Karina Sałek ◽  
Urszula Guzik ◽  
Teofil Jesionowski ◽  
Zefiryn Cybulski

Anaerobe ◽  
2014 ◽  
Vol 28 ◽  
pp. 212-215 ◽  
Author(s):  
Valérie Andriantsoanirina ◽  
Anne-Claire Teolis ◽  
Liu Xin Xin ◽  
Marie Jose Butel ◽  
Julio Aires

2014 ◽  
Vol 94 (2) ◽  
pp. 272-289 ◽  
Author(s):  
Alexandra Faulds‐Pain ◽  
Susan M. Twine ◽  
Evgeny Vinogradov ◽  
Philippa C. R. Strong ◽  
Anne Dell ◽  
...  

2009 ◽  
Vol 72 (8) ◽  
pp. 1699-1704 ◽  
Author(s):  
SUPAYANG PIYAWAN VORAVUTHIKUNCHAI ◽  
SAKOL SUWALAK

The effects of Quercus infectoria (family Fagaceae) nutgalls on cell surface properties of Shiga toxigenic Escherichia coli (STEC) were investigated with an assay of microbial adhesion to hydrocarbon. The surface of bacterial cells treated with Q. infectoria exhibited a higher level of cell surface hydrophobicity (CSH) toward toluene than did the surface of untreated cells. With 50% ethanolic extract, the CSH of the three strains of STEC O157:H7 treated with 4× MIC of the extract resulted in moderate or strong hydrophobicity, whereas at 2× MIC and MIC, the CSH of only one strain of E. coli O157:H7 was significantly affected. The 95% ethanolic extract had a significant effect on CSH of all three strains at both 4× MIC and 2× MIC but not at the MIC. The effect on bacterial CSH was less pronounced with the other STEC strains. At 4× MIC, the 50% ethanolic extract increased the CSH of all non-O157 STEC strains significantly. At 2× MIC and 4× MIC, the 95% ethanolic extract affected the CSH of E. coli O26:H11 significantly but did not affect E. coli O111:NM or E. coli O22. Electron microscopic examination revealed the loss of pili in the treated cells. The ability of Q. infectoria extract to modify hydrophobic domains enables this extract to partition the lipids of the bacterial cell membrane, rendering the membrane more permeable and allowing leakage of ions and other cell contents, which leads to cell death. Further studies are required to evaluate the effects of Q. infectoria extract in food systems or in vivo and provide support for the use of this extract as a food additive for control of these STEC pathogens.


Sign in / Sign up

Export Citation Format

Share Document