bifidobacterium breve
Recently Published Documents


TOTAL DOCUMENTS

372
(FIVE YEARS 99)

H-INDEX

45
(FIVE YEARS 8)

2021 ◽  
pp. 1-17
Author(s):  
Mona Abdelhamid ◽  
Chunyu Zhou ◽  
Kazuya Ohno ◽  
Tetsuya Kuhara ◽  
Ferdous Taslima ◽  
...  

Background: Probiotic supplementation reestablishes microbiome diversity and improves brain function in Alzheimer’s disease (AD); their molecular mechanisms, however, have not yet been fully illustrated. Objective: We investigated the effects of orally supplemented Bifidobacterium breve MCC1274 on cognitive function and AD-like pathologies in AppNL-G-F mice. Methods: Three-month-old AppNL-G-F mice were orally supplemented with B. breve MCC1274 for four months. The short-term memory function was evaluated using a novel object recognition test. Amyloid plaques, amyloid-β (Aβ) levels, Aβ fibril, amyloid-β protein precursor and its processing enzymes, its metabolic products, glial activity, and cell proliferation in the subgranular zone of the dentate gyrus were evaluated by immunohistochemistry, Aβ ELISA, western blotting, and immunofluorescence staining. The mRNA expression levels of pro- and anti-inflammatory cytokines were determined by qRT-PCR analysis. Results: We found that the oral B. breve MCC1 274 supplementation prevented memory impairment in AppNL-G-F mice and decreased hippocampal Aβ levels through the enhancement of the a-disintegrin and metalloproteinase 10 (ADAM10) level. Moreover, administration of the probiotic activated the ERK/HIF-1α signaling pathway responsible for increasing the ADAM10 level and also attenuated microglial activation, which in turn led to reduction in the mRNA expression levels of pro-inflammatory cytokines in the brain. In addition, B. breve MCC1274 supplementation increased the level of synaptic proteins in the hippocampus. Conclusion: Our findings support the possibility that oral B. breve MCC1274 supplementation might be used as a potential preventive therapy for AD progression.


2021 ◽  
Vol 17 (S9) ◽  
Author(s):  
Kazuya Ohno ◽  
Francois Bernier ◽  
Noriko Katsumata ◽  
Takashi Shimizu ◽  
Jin‐Zhong Xiao

2021 ◽  
pp. 273-302
Author(s):  
Lorena Ruiz ◽  
Francesca Bottacini ◽  
Lucie Semenec ◽  
Amy Cain ◽  
Douwe van Sinderen

2021 ◽  
Vol 11 (10) ◽  
pp. 987
Author(s):  
Ryodai Yamamura ◽  
Ryo Okubo ◽  
Noriko Katsumata ◽  
Toshitaka Odamaki ◽  
Naoki Hashimoto ◽  
...  

A recent meta-analysis found that probiotics have moderate-to-large beneficial effects on depressive symptoms in patients with psychiatric disorders. However, it remains unclear how the baseline gut microbiota before probiotic administration influences the host’s response to probiotics. Therefore, we aimed to determine whether the predicted functional profile of the gut microbiota influences the effectiveness of probiotic treatment in patients with schizophrenia. A total of 29 patients with schizophrenia consumed Bifidobacterium breve A-1 (synonym B. breve MCC1274) for 4 weeks. We considered patients who showed a 25% or more reduction in the Hospital Anxiety and Depression Scale total score at 4 weeks from baseline to be “responders” and those who did not to be “non-responders”. We predicted the gut microbial functional genes based on 16S rRNA gene sequences and applied the linear discriminant analysis effect size method to determine the gut microbial functional genes most likely to explain the differences between responders and non-responders at baseline. The results showed that lipid and energy metabolism was elevated at baseline in responders (n = 12) compared to non-responders (n = 17). These findings highlight the importance of assessing the gut microbial functional genes at baseline before probiotic therapy initiation in patients with psychiatric disorders.


2021 ◽  
Vol 9 (10) ◽  
pp. 2020
Author(s):  
John A. Renye ◽  
Andre K. White ◽  
Arland T. Hotchkiss

Novel probiotic strains that can ferment prebiotics are important for functional foods. The utilization of prebiotics is strain specific, so we screened 86 Lactobacillus strains and compared them to Bifidobacterium breve 2141 for the ability to grow and produce SCFA when 1% inulin or fructo-oligosaccharides (FOS) were provided as the carbon source in batch fermentations. When grown anaerobically at 32 °C, ten Lactobacillus strains grew on both prebiotic substrates (OD600 ≥ 1.2); while Lactobacillus coryniformis subsp. torquens B4390 grew only in the presence of inulin. When the growth temperature was increased to 37 °C to simulate the human body temperature, four of these strains were no longer able to grow on either prebiotic. Additionally, L. casei strains 4646 and B441, and L. helveticus strains B1842 and B1929 did not require anaerobic conditions for growth on both prebiotics. Short-chain fatty acid analysis was performed on cell-free supernatants. The concentration of lactic acid produced by the ten Lactobacillus strains in the presence of prebiotics ranged from 73–205 mM. L. helveticus B1929 produced the highest concentration of acetic acid ~19 mM, while L. paraplantarum B23115 and L. paracasei ssp. paracasei B4564 produced the highest concentrations of propionic (1.8–4.0 mM) and butyric (0.9 and 1.1 mM) acids from prebiotic fermentation. L. mali B4563, L. paraplantarum B23115 and L. paracasei ssp. paracasei B4564 were identified as butyrate producers for the first time. These strains hold potential as synbiotics with FOS or inulin in the development of functional foods, including infant formula.


Sign in / Sign up

Export Citation Format

Share Document