Catabolic characterization of dipicolinic acid in Alcaligenes faecalis strain JQ135

2021 ◽  
Vol 165 ◽  
pp. 105312
Author(s):  
Yang Mu ◽  
Fuyin Zhang ◽  
Ning Li ◽  
Shanshan Pi ◽  
Ang Li ◽  
...  
2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Rashid Pervez ◽  
Showkat Ahmad Lone ◽  
Sasmita Pattnaik

Abstract Background Entomopathogenic nematodes (EPNs) harboring symbiotic bacteria are one of the safest alternatives to the chemical insecticides for the control of various insect pests. Infective juveniles of EPNs locate a target insect, enter through the openings, and reach the hemocoel, where they release the symbiotic bacteria and the target gets killed by the virulence factors of the bacteria. Photorhabdus with Heterorhabditis spp. are well documented; little is known about the associated bacteria. Main body In this study, we explored the presence of symbiotic and associated bacteria from Heterorhabditis sp. (IISR-EPN 09) and characterized by phenotypic, biochemical, and molecular approaches. Six bacterial isolates, belonging to four different genera, were recovered and identified as follows: Photorhabdus luminescens, one each strain of Providencia vermicola, Pseudomonas entomophila, Alcaligenes aquatilis, and two strains of Alcaligenes faecalis based on the phenotypic, biochemical criteria and the sequencing of 16S rRNA gene. Conclusion P. luminescens is symbiotically associated with Heterorhabditis sp. (IISR-EPN 09), whereas P. vermicola, P. entomophila, A. aquatilis, and A. faecalis are the associated bacteria. Further studies are needed to determine the exact role of the bacterial associates with the Heterorhabditis sp.


Author(s):  
Soad A. Abdelgalil ◽  
Ahmad R. Attia ◽  
Reyed M. Reyed ◽  
Nadia A. Soliman

Abstract Background Due to the multitude industrial applications of ligninolytic enzymes, their demands are increasing. Partial purification and intensive characterization of contemporary highly acidic laccase enzyme produced by an Egyptian local isolate designated Alcaligenes faecalis NYSO were studied in the present investigation. Results Alcaligenes faecalis NYSO laccase has been partially purified and intensively biochemically characterized. It was noticed that 40–60% ammonium sulfate saturation showed maximum activity. A protein band with an apparent molecular mass of ~ 50 kDa related to NYSO laccase was identified through SDS-PAGE and zymography. The partially purified enzyme exhibited maximum activity at 55 °C and pH suboptimal (2.5–5.0). Remarkable activation for enzyme activity was recognized after 10-min exposure to temperatures (T) 50, 60, and 70 °C; time elongation caused inactivation, where ~ 50% of activity was lost after a 7-h exposure to 60 °C. Some metal ions Cu2+, Zn2+, Co2+, Ni2+, Mn2+, Cd2+, Cr2+, and Mg2+ caused strong stimulation for enzyme activity, but Fe2+ and Hg2+ reduced the activity. One millimolar of chelating agents [ethylenediamine tetraacetic acid (EDTA), sodium citrate, and sodium oxalate] caused strong activation for enzyme activity. Sodium dodecyl sulfate (SDS), cysteine-HCl, dithiothreitol (DTT), β-mercaptoethanol, thioglycolic acid, and sodium azide caused strong inhibition for NYSO laccase activity even at low concentration. One millimolar of urea, imidazole, kojic acid, phenylmethylsulfonyl fluoride (PMSF), H2O2, and Triton X-100 caused activation. The partially purified NYSO laccase had decolorization activity towards different dyes such as congo red, crystal violet, methylene blue, fast green, basic fuchsin, bromophenol blue, malachite green, bromocresol purple eriochrome black T, and Coomassie Brilliant Blue R-250 with various degree of degradation. Also, it had a vast range of substrate specificity including lignin, but with high affinity towards p-anisidine. Conclusion The promising properties of the newly studied laccase enzyme from Alcaligenes faecalis NYSO strain would support several industries such as textile, food, and paper and open the possibility for commercial use in water treatment. It will also open the door to new applications due to its ligninolytic properties in the near future.


1990 ◽  
Vol 69 (1) ◽  
pp. 54-56 ◽  
Author(s):  
Hohzoh Kiyohara ◽  
Noboru Takizawa ◽  
Hitoshi Date ◽  
Shin Torigoe ◽  
Keiji Yano

Author(s):  
Giacomo Nardi ◽  
Mauricio Lineros-Rosa ◽  
Fabrizio Palumbo ◽  
Miguel A. Miranda ◽  
Virginie Lhiaubet-Vallet

2004 ◽  
Vol 186 (6) ◽  
pp. 1614-1619 ◽  
Author(s):  
Joanne M. Santini ◽  
Rachel N. vanden Hoven

ABSTRACT The chemolithoautotroph NT-26 oxidizes arsenite to arsenate by using a periplasmic arsenite oxidase. Purification and preliminary characterization of the enzyme revealed that it (i) contains two heterologous subunits, AroA (98 kDa) and AroB (14 kDa); (ii) has a native molecular mass of 219 kDa, suggesting an α2β2 configuration; and (iii) contains two molybdenum and 9 or 10 iron atoms per α2β2 unit. The genes that encode the enzyme have been cloned and sequenced. Sequence analyses revealed similarities to the arsenite oxidase of Alcaligenes faecalis, the putative arsenite oxidase of the beta-proteobacterium ULPAs1, and putative proteins of Aeropyrum pernix, Sulfolobus tokodaii, and Chloroflexus aurantiacus. Interestingly, the AroA subunit was found to be similar to the molybdenum-containing subunits of enzymes in the dimethyl sulfoxide reductase family, whereas the AroB subunit was found to be similar to the Rieske iron-sulfur proteins of cytochrome bc 1 and b 6 f complexes. The NT-26 arsenite oxidase is probably exported to the periplasm via the Tat secretory pathway, with the AroB leader sequence used for export. Confirmation that NT-26 obtains energy from the oxidation of arsenite was obtained, as an aroA mutant was unable to grow chemolithoautotrophically with arsenite. This mutant could grow heterotrophically in the presence of arsenite; however, the arsenite was not oxidized to arsenate.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Nahed Al Laham ◽  
Kalyan D. Chavda ◽  
Astrid V. Cienfuegos-Gallet ◽  
Barry N. Kreiswirth ◽  
Liang Chen

ABSTRACT Carbapenemase-producing Gram-negative bacteria (CP-GNB) have increasingly spread worldwide, and different families of carbapenemases have been identified in various bacterial species. Here, we report the identification of five VIM metallo-β-lactamase-producing Alcaligenes faecalis isolates associated with a small outbreak in a large hospital in Gaza, Palestine. Next-generation sequencing analysis showed bla VIM-2 is harbored by a chromosomal genomic island among three strains, while bla VIM-4 is carried by a novel plasmid in two strains.


FEBS Journal ◽  
2006 ◽  
Vol 273 (11) ◽  
pp. 2374-2387 ◽  
Author(s):  
Puja Shahi ◽  
Ish Kumar ◽  
Ritu Sharma ◽  
Shefali Sanger ◽  
Ravinder S. Jolly

Author(s):  
Keiko Kita ◽  
Shun-ichiro Mashiba ◽  
Masatoshi Nagita ◽  
Kaori Ishimaru ◽  
Kenji Okamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document