Choline transporter-like protein 2 interacts with chitin synthase 1 and is involved in insect cuticle development

Author(s):  
Yanwei Duan ◽  
Weixing Zhu ◽  
Xiaoming Zhao ◽  
Hans Merzendorfer ◽  
Jiqiang Chen ◽  
...  
Author(s):  
L. T. Germinario ◽  
J. Blackwell ◽  
J. Frank

This report describes the use of digital correlation and averaging methods 1,2 for the reconstruction of high dose electron micrographs of the chitin-protein complex from Megarhyssa ovipositor. Electron microscopy of uranyl acetate stained insect cuticle has demonstrated a hexagonal array of unstained chitin monofibrils, 2.4−3.0 nm in diameter, in a stained protein matrix3,4. Optical diffraction Indicated a hexagonal lattice with a = 5.1-8.3 nm3 A particularly well ordered complex is found in the ovipositor of the ichneumon fly Megarhyssa: the small angle x-ray data gives a = 7.25 nm, and the wide angle pattern shows that the protein consists of subunits arranged in a 61 helix, with an axial repeat of 3.06 nm5.


2020 ◽  
Vol 16 (1) ◽  
pp. 58-63
Author(s):  
Amrutha Vijayakumar ◽  
Ajith Madhavan ◽  
Chinchu Bose ◽  
Pandurangan Nanjan ◽  
Sindhu S. Kokkal ◽  
...  

Background: Chitin is the main component of fungal, protozoan and helminth cell wall. They help to maintain the structural and functional characteristics of these organisms. The chitin wall is dynamic and is repaired, rearranged and synthesized as the cells develop. Active synthesis can be noticed during cytokinesis, laying of primary septum, maintenance of lateral cell wall integrity and hyphal tip growth. Chitin synthesis involves coordinated action of two enzymes namely, chitin synthase (that lays new cell wall) and chitinase (that removes the older ones). Since chitin synthase is conserved in different eukaryotic microorganisms that can be a ‘soft target’ for inhibition with small molecules. When chitin synthase is inhibited, it leads to the loss of viability of cells owing to the self- disruption of the cell wall by existing chitinase. Methods: In the described study, small molecules from plant sources were screened for their ability to interfere with hyphal tip growth, by employing Hyphal Tip Burst assay (HTB). Aspergillus niger was used as the model organism. The specific role of these small molecules in interfering with chitin synthesis was established with an in-vitro method. The enzyme required was isolated from Aspergillus niger and its activity was deduced through a novel method involving non-radioactively labelled substrate. The activity of the potential lead molecules were also checked against Candida albicans and Caenorhabditis elegans. The latter was adopted as a surrogate for the pathogenic helminths as it shares similarity with regard to cell wall structure and biochemistry. Moreover, it is widely studied and the methodologies are well established. Results: Out of the 11 compounds and extracts screened, 8 were found to be prospective. They were also found to be effective against Candida albicans and Caenorhabditis elegans. Conclusion: Purified Methyl Ethyl Ketone (MEK) Fraction1 (F1) of Coconut (Cocos nucifera) Shell Extract (COSE) was found to be more effective against Candida albicans with an IC50 value of 3.04 μg/mL and on L4 stage of Caenorhabditis elegans with an IC50 of 77.8 μg/mL.


Author(s):  
Antonio Rogério Bezerra do Nascimento ◽  
Vitor Antonio Corrêa Pavinato ◽  
Juliana Gonzales Rodrigues ◽  
Karina Lucas Silva-Brandão ◽  
Fernando Luis Consoli ◽  
...  

2021 ◽  
Vol 127 (5) ◽  
Author(s):  
Karen Stamm ◽  
Brian Daniel Saltin ◽  
Jan-Henning Dirks

AbstractThe cuticle exoskeleton plays a key role in facilitating the evolutionary success of insects. Since the mid of the last century, many different biomechanical properties of exoskeletons have been investigated, always utilizing the most sophisticated scientific methods available at the time. So far, information on the biomechanical properties of cuticle seems to be as diverse as the methods used to measure them. As a consequence, insect cuticle is often considered to exhibit the most complex and diverse biomechanical properties of any biological material. However, it remains unclear which role the respective measurement methods and sample treatments used in previous studies play in supporting this claim. This review provides a broad overview of examination techniques used to study biomechanical properties of insect exoskeletons and discusses their respective advantages and disadvantages in describing the properties of a complex material such as cuticle. Our meta-analysis of the present data confirms significant effects of the respective measurement methods, sample treatments and body parts on the obtained mechanical properties. Based on our findings, we highlight research gaps and point out important factors which should be taken into account in future studies on insect cuticle.


2021 ◽  
Author(s):  
Changwei Gong ◽  
Xuegui Wang ◽  
Qian Huang ◽  
Jinyue Zhang ◽  
Yuming Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document