Strike-slip faulting on Titan: Modeling tidal stresses and shear failure conditions due to pore fluid interactions

Icarus ◽  
2022 ◽  
Vol 371 ◽  
pp. 114700
Author(s):  
Liliane M.L. Burkhard ◽  
Bridget R. Smith-Konter ◽  
Sarah A. Fagents ◽  
Marissa E. Cameron ◽  
Geoffrey C. Collins ◽  
...  
2021 ◽  
Author(s):  
Gilbert Hinge ◽  
Jayanta Kumar Das ◽  
Biswadeep Bharali

<p>The success of any civil engineering structure's foundation design depends upon the accuracy of estimation of soil’s ultimate bearing capacity. Numerous numerical approaches have been proposed to estimate the foundation's bearing capacity value to avoid repetitive and expensive experimental work. All these models have their advantages and disadvantages. In this study, we compiled all the governing equations mentioned in Bureau of Indian standard IS:6403-1981 and modify the equation for Ultimate Bearing Capacity. The equation was modified by considering two new parameters, K1(for general shear) and K2 (for local shear) so that a common governing equation can be used for both general and local shear failure criteria. The program used for running the model was written in MATLAB language code and verified with the observed field data. Results indicate that the proposed model accurately characterized the ultimate, safe, and allowable bearing capacity of a shallow footing at different depths. The correlation coefficients between the observed and model-predicted bearing capacity values for a 2m foundation depth with footing size of 1.5 ×1.5, 2.0 × 2.0, and 2.5 × 2.5 m are 0.95, 0.94, and 0.96. A similar result was noted for the other foundation depth and footing size. Findings show that the model can be used as a reliable tool for predicting the bearing capacity of shallow foundations at any given depth.  Moreover, the formulated model can also be used for the transition zone between general and local shear failure conditions.</p>


2020 ◽  
Author(s):  
Franciscus Aben ◽  
Nicolas Brantut

<p>During shear failure in rock, fracture damage created within the failure zone causes localized dilation, which, under partially drained conditions, results in a localized pore fluid pressure drop. The effective normal stress within the failure zone therefore increases, and with it the fracture and frictional strengths. This effect is known as dilatancy hardening. Dilatancy hardening may suppress rupture propagation and slip rates sufficiently to stabilize the rupture and postpone or prevent dynamic failure. Here, we study the loading conditions at which the rate of dilatancy hardening is sufficiently high to stabilize failure. We do so by measuring the local pore fluid pressure during failure and the rate of dilatancy with slip at a range of confining and pore fluid pressures.</p><p>We performed shear failure experiments on thermally treated intact Westerly granite under triaxial loading conditions. The samples were saturated with water and contained notches to force the location of the shear failure zone. For each experiment, we imposed a different combination of confining pressure and pore fluid pressure, so that the overall effective pressure was either 40 MPa or 80 MPa prior to axial deformation at 10<sup>-6</sup> s<sup>-1</sup> strain rate. Dynamic shear failure was recognized by a sudden audible stress drop, whereas the stress drop during stabilized shear failure took longer and was inaudible. Local pore fluid pressure was measured with in-house developed pressure transducers placed on the trajectory of the prospective failure.</p><p>At effective pressures of 40 MPa and 80 MPa, we observe stabilized failure for a ratio λ (imposed pore fluid pressure over confining pressure) > 0.5. For λ < 0.5, we observe dynamic failure. Of two experiments performed at λ = 0.5 and 80 MPa effective pressure, one showed stabilized failure and one failed dynamically. For λ > 0.5, we observe pore fluid pressure drops in the failure zone of 30-45 MPa for 40 MPa effective pressure, and 60 MPa for 80 MPa confining pressure. The local pore fluid pressure during dynamic failure (λ < 0.5) is 0 MPa, strongly suggesting local fluid vaporization. Of the two experiments at λ = 0.5, the dilation rate with slip is higher for the dynamic failure relative to the stabilized failure.</p><p>We show that with increasing effective pressure, dilatancy hardening increases as the local pore fluid pressure drop during failure becomes larger. For λ < 0.5, dilatancy hardening is insufficient to stabilize failure because the local pore fluid pressure drop is larger than the absolute imposed pore fluid pressure. Near λ = 0.5, small variations in dilatancy control rupture stability. For λ > 0.5, dilatancy hardening is sufficient to suppress dynamic failure.</p>


2021 ◽  
Author(s):  
Salim Al-Busaidi ◽  
Qasim Hinaai ◽  
Rajeev Ranjan Kumar ◽  
Ying Ru Chen ◽  
Redha Hasan Al Lawatia ◽  
...  

Abstract The field under study is witnessing an increasing trend in NPT events while drilling vertical wells through high stressed shale formations and the underlying depleted sandstone reservoir in the same section. The field has multiple sets of faults with lateral variations in stress azimuth and completion quality with the regional strike-slip regime. High angled wells are being planned to increase reservoir coverage and perform hydro fracturing. This paper provides details of capturing stress regime variation along with the effects of depletion in offset wells and identify suitable azimuth of planned well with drilling risks through a 3D geomechanical study. Comprehensive 1D mechanical earth models are constructed using open hole logs, core data and available hydro-fracturing results for wells in the field. Rock mechanical properties have been calibrated at well scale as per core data. Poro-elastic horizontal strain method at well scale indicates a strike-slip to reverse fault variation with significant horizontal stress anisotropy as evident from the closure pressure range of 9,500 psi to 12,500 psi. 3D numerical geomechanical model has been constructed considering structural discontinuities, rock mechanical properties and formation pressure to estimate the principal stresses. Stress direction data from dipole sonic measurements and breakout azimuth from borehole image logs are used for calibration in 3D model incorporating faults. Stress path for depletion has been estimated. Results from the study suggested change in casing policy specifically to have a liner isolating the overburden formations where more than 800 m should be drilled prior to entering the depleted reservoir formation. 3D geomechanical analysis reckons that the mud weight should be in the range of 12.7 kPa/m to 13.1 kPa/m during building up the well profile at 80 deg inclination in overlying shale while 1D study suggesting a range of 13.2 kPa/m to 13.7 kPa/m. Along well path at 80deg to 90deg deviation within reservoir layer toward minimum horizontal stress azimuth, mud weight requirement was found to be much lower at 11.5 kPa/m to 12.1 kPa/m. Apart from mud weight, BHA and chemicals were optimized to avoid differential sticking and better hole cleaning for respective sections. Actual mud weight used was in the range of 12.8 kPa/m to 13.1 kPa/m for building up with no torque and drag issue while running liner and BHA trips. Mud weight was maintained in the range of 11.5 kPa/m to 11.8 kPa/m in the horizontal section with minimum breakouts and smoother hole condition. Cuttings shape and size analysis were performed regularly to check well behavior and manage downhole pressure higher than shear failure limit. Using 3D Geomechanical study and continuous monitoring of drilling parameters in near real-time, the buildup and reservoir sections have been drilled within schedule with no major NPT event and saved at least one week of rig days.


2018 ◽  
Author(s):  
Mirko Carlini ◽  
Giulio Viola ◽  
Jussi Mattila ◽  
Luca Castellucci

Abstract. Fault and fracture planes (FFP) that cut through multilayer sequences can be significantly refracted at layer-layer interfaces due to the different mechanical properties of the contiguous layers, such as shear strength, friction coefficient and grain size. Detailed studies of different but coexisting and broadly coeval failure modes (tensile, hybrid and shear) within multilayers deformed in extensional settings have led to infer relatively low confinement and differential stress as the boundary stress conditions at which FFP refraction occurs. Although indeed widely recognized and studied in extensional settings, the details of FFP nucleation, propagation and refraction through multilayers remain not completely understood, partly because of the common lack of geological structures documenting the incipient and intermediate stages of deformation. Here we present the results of a study on strongly refracted strike-slip FFP within the mechanically layered turbidites of the Marnoso Arenacea Formation (MAF) of the Italian Northern Apennines. The MAF is characterized by the alternation of sandstone (strong) and carbonate mudstone (weak) layers. The studied refracted FFP formed at the front of the regional-scale NE-verging Palazzuolo anticline and post-date almost any other observed structure except for a set of late extensional faults. The studied faults display coexistence of shear and hybrid (tensile-shear) failure modes and we suggest that they initially nucleated as shear fractures (mode III) within the weak layers and, only at a later stage, propagated as dilatant fractures (mode I-II) within the strong layers. The tensile fractures within the strong layers invariably contain blocky calcite infills, which are, on the other hand, almost completely absent along the shear fracture planes deforming the weak layers. Paleostress analysis was performed to constrain the NNE-SSW compressional stress field that produced the refracted FFP and to exclude the possibility that the present attitude of these structures may result from the rotation through time of faults with an initial orientation. Slip tendency analysis was also performed to infer the relative slip and dilation potentials of the observed structures. Mesoscopic analysis of preserved structures from the incipient and intermediate stages of development and evolution of the refracted FFP allowed us to build an evolutionary scheme wherein: a) Nucleation of refracted FFP occurs within weak layers; b) Refraction is primarily controlled by grain size and clay mineral content and variations thereof at layer-layer interfaces but also within individual layers; c) Propagation within strong layers occurs primarily by fluid-assisted development ahead of the FFP tip of a “process zone” defined by a network of hybrid and tensile fractures; d) The process zone causes the progressive weakening and fragmentation of the affected rock volume to eventually allow the FFP to propagate through the strong layers; e) Enhanced suitable conditions for the development of tensile and hybrid fractures can be also achieved thanks to the important role played by pressured fluids.


1994 ◽  
Vol 9 (3) ◽  
pp. 352
Author(s):  
Jane S. Tribble

1994 ◽  
Vol 9 (2) ◽  
pp. 149-150 ◽  
Author(s):  
Necip Guven

Sign in / Sign up

Export Citation Format

Share Document