tensile fractures
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 29)

H-INDEX

12
(FIVE YEARS 3)

2022 ◽  
pp. 129-153
Author(s):  
Christophe Pascal
Keyword(s):  

2021 ◽  
Vol 11 (23) ◽  
pp. 11230
Author(s):  
Xuan Xu ◽  
Li-Yuan Chi ◽  
Jun Yang ◽  
Qi Yu

In order to investigate the temporal and morphological characteristics of dynamic tensile fractures, experiments on Brazilian specimens machined from igneous rocks (Breccia and Andesite) are carried out with the split Hopkinson pressure bar (SHPB). Detailed observation of the fracture processes of the Brazilian specimens is captured by high-speed camera at a frame rate of 100,000 frames per second. The rate-dependent effect of the dynamic tensile strength of the two igneous rocks is fitted and predicted by the incubation time criterion. Digital image correlation (DIC) is used to calculate the full-field tensile strain distributions on the specimen surface during the loading stage preceding fracture, and this hysteresis of dynamic fracture relative to stress level is interpreted by introducing the concept of incubation time. After the main crack appears, image processing technology is exploited to extract the pixel information of cracks in the high-speed images. Then, FracPaQ quantifies the morphology of the fragmentized process by filling the binarization of cracks with fracture traces. After coordination of the statistical information from these fracture traces, the rose diagram representing their angles and length weights can visually represent the fragmentized characteristics of the Brazilian specimen. Specifically, length-angle distributions of fracture traces at various moments are consistent with the Gaussian function, and the curve fitting parameters reflect differences in the fracture behaviors between the two igneous rocks. In conclusion, the dynamic fracture characteristics of two igneous rocks in dynamic splitting processes are quantified statistically, which can provide references for relevant research.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shirui Zhang ◽  
Shili Qiu ◽  
Ping Li ◽  
Yongyuan Kou ◽  
Pengfei Kou

Amygdaloidal basalt, as a heterogeneous rock, is widely exposed at Baihetan hydropower station, China. The geometric effect of amygdales needs further studies and quantifying the shape, orientation, and statistical distribution of amygdales plays an important role in the laboratory and numerical experiments. Therefore, digital image processing (DIP) was first utilized to build a heterogeneous model (HM) to calibrate against the laboratory test results. Then, the heterogeneous models (HMs) with prescribed geometric features were generated by the inverse Monte-Carlo (IMC) algorithm. The uniaxial compression experiments based on HMs were conducted to study the mechanism of the crack initiation and propagation in the amygdaloidal basalt. The tensile fractures were mainly occurred in the matrix, and the shear fractures were mainly occurred in the amygdales. With the increase in the elliptic coefficient of amygdales, the uniaxial compressive strength (UCS) showed a linear growth trend. With the increase in the orientation of amygdales, the UCS exhibited a “V-shaped” distribution characteristic. This paper provides a numerical method for studying the mechanical properties of rocks with flaws.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xuyang Wu ◽  
Yun Bao ◽  
Mingyang Ren ◽  
Qingguo Liang

The unconfined penetration test (UP test) is one of the indirect methods to measure the tensile strength of soils. Through a series of UP tests of undisturbed and remolded loess, the split angle (α) of the wedge body which was shaped in the process of the experiment was discussed. And then, the particle movement, the force transfer, and the fracture development law of the sample were studied by the distinct element method (PFC2D). The experiment and numerical simulation results show the following: (1) the split angle (α) presents an exponential decrease with tensile strength (σt) and a linear decrease with internal friction angle (φ); (2) K that can be written as tan (2α + φ) is a coefficient to calculate tensile strength, which is equal to 2.00 for remolded loess and 1.50 for undisturbed loess; (3) the distinct element simulation shows that the resisting force by the UP test comes from both tensile stress and shear stress; (4) the tensile fractures and shear fractures appear at almost the same time when the tensile stress is approximately 70% of tensile strength.


Author(s):  
Zhiyang Zhao ◽  
Renbo Song ◽  
Yongjin Wang ◽  
Yingchao Zhang ◽  
Chunyang Hu ◽  
...  

Author(s):  
Lauri Uotinen ◽  
Masoud Torkan ◽  
Alireza Baghbanan ◽  
Enrique Caballero Hernández ◽  
Mikael Rinne

An accurate understanding of jointed rock mass behavior is important in many applications ranging from deep geological disposal of nuclear waste to deep mining to urban geoengineering projects. The roughness of rock fractures and the matching of the fracture surfaces are the key contributors to the shear strength of rock fractures. In this research, push shear tests with three normal stress levels of 3.6, 6.0, and 8.5 kPa were conducted with two granite samples with artificially induced well-matching tensile fractures with sizes of 500 mm × 250 mm and 1000 mm × 500 mm. The large sample reached on average a -60 % weaker peak shear stress than the medium-sized sample, and a strong negative scale effect was observed in the peak shear strength. The roughness of the surfaces was measured using a profilometer and photogrammetry. The scale-corrected profilometer-based method (JRC) underestimates the peak friction angle for the medium-sized slabs by -27 % for the medium sample and -9 % for the large sample. The photogrammetry-based (Z’2) method produces an estimate with -7% (medium) and +12 % (large) errors. The photogrammetry-based Z’2 is an objective method that consistently produces usable estimates for the JRC and peak friction angle.


2021 ◽  
Vol 11 (11) ◽  
pp. 4992
Author(s):  
Xiaofeng Huo ◽  
Xiuzhi Shi ◽  
Xianyang Qiu ◽  
Hui Chen ◽  
Jian Zhou ◽  
...  

A 3D numerical model was presented to investigate the blast-induced damage characteristics of highly stressed rock mass. The RHT (Riedel, Hiermaier, and Thoma) model in LS-DYNA was used to simulate the blast-induced damage and its parameters were calibrated by a physical model test. Based on the calibrated numerical model, the influences of confining pressure and free surface span on the blast-induced damage characteristics were investigated. The results show that under uniaxial loading, the crater volume increases with confining pressure increases. The uniaxial static load can change the optimal burden and the critical embedding depth of charge. In stressed rock, the variation law of the crater shape affected by radial tensile fractures is opposite to that affected by reflected tensile fractures. Under the biaxial static load, the crater volume of the borehole placed on the side of the max static load is greater than the other side. The explosion crater can be improved by increasing the free surface span on the same side. Finally, it is suggested that the blasting efficiency can be improved by preferentially detonating the charge on the side of the max static load, and then the charge on the other side can be detonated with a wider free surface span.


Author(s):  
Chaojie Cheng ◽  
Harald Milsch

AbstractThe hydromechanical properties of single self-propping fractures under stress are of fundamental interest for fractured-rock hydrology and a large number of geotechnical applications. This experimental study investigates fracture closure and hydraulic aperture changes of displaced tensile fractures, aligned tensile fractures, and saw-cut fractures for two types of sandstone (i.e., Flechtinger and Fontainebleau) with contrasting mechanical properties, cycling confining pressure between 5 and 30 MPa. Emphasis is placed on how surface roughness, fracture wall offset, and the mechanical properties of the contact asperities affect the self-propping potential of these fractures under normal stress. A relative fracture wall displacement can significantly increase fracture aperture and hydraulic conductivity, but the degree of increase strongly depends on the fracture surface roughness. For smooth fractures, surface roughness remains scale-independent as long as the fracture area is larger than a roll-off wavelength and thus any further displacement does not affect fracture aperture. For rough tensile fractures, these are self-affine over a larger scale so that an incremental fracture wall offset likely leads to an increase in fracture aperture. X-ray microtomography of the fractures indicates that the contact area ratio of the tensile fractures after the confining pressure cycle inversely correlates with the fracture wall offset yielding values in the range of about 3–25%, depending, first, on the respective surface roughness and, second, on the strength of the asperities in contact. Moreover, the contact asperities mainly occur isolated and tend to be preferentially oriented in the direction perpendicular to the fracture wall displacement which, in turn, may induce flow anisotropy. This, overall, implies that relatively harder sedimentary rocks have a higher self-propping potential for sustainable fluid flow through fractures in comparison to relatively soft rocks when specific conditions regarding surface roughness and fracture wall offset are met.


Sign in / Sign up

Export Citation Format

Share Document