Multi-objective optimizations on thermal and hydraulic performance of symmetric and asymmetric bionic Y-shaped fractal networks by genetic algorithm coupled with CFD simulation

Author(s):  
Ziqiang He ◽  
Yunfei Yan ◽  
Shuai Feng ◽  
Zhongqing Yang ◽  
Li Zhang ◽  
...  
Author(s):  
Zilin Ran ◽  
Wenxing Ma ◽  
Chunbao Liu ◽  
Jing Li

It is hard to simultaneously improve the peak efficiency (η *) and the width of the high-efficiency region ( Gη) for a hydrodynamic torque converter. A combination of comprehensive CFD simulation and multi-objective optimization was pretested. The elaborate CFD simulation calculation included a reasonable mesh layout, a robust algorithm and a correct turbulence model, whose results were also experimentally verified. In our study, the Kriging surrogate model was first used to construct a nonlinear relationship between the inlet and outlet angle and the economic performance index of the hydrodynamic torque converter. To ensure that the accuracy of the surrogate model meet the requirements, we also used 10 sets of sample points to verify the accuracy of our surrogate model. The accuracy is found to meet the requirements, which shows that the accuracy of the constructed surrogate model is relatively high. We choose to apply the second-generation non-dominant sorting genetic algorithm (NSGA-II) to solve our problem. After solving the Pareto frontier solution set, we obtain a set of global optimal solutions on the Pareto frontier solution set. The optimization results show that the η * is increased by 2.49% and that the Gη is increased by 14.23%. We extracted the flow field structure near the turbine region, characterized the difference between original and optimal model from the flow field perspective, and demonstrated the accuracy of our optimization results. Finally, we used CFD to verify our optimization results, further illustrating the accuracy of the optimization results prediction. Literature research indicates that a large amount of experiments to optimize the η * and the Gη of the hydrodynamic torque converter will bring huge trial cost and time cost. We conclude from our research that the proposed calculation method can solve such problems well.


2018 ◽  
Vol 24 (3) ◽  
pp. 84
Author(s):  
Hassan Abdullah Kubba ◽  
Mounir Thamer Esmieel

Nowadays, the power plant is changing the power industry from a centralized and vertically integrated form into regional, competitive and functionally separate units. This is done with the future aims of increasing efficiency by better management and better employment of existing equipment and lower price of electricity to all types of customers while retaining a reliable system. This research is aimed to solve the optimal power flow (OPF) problem. The OPF is used to minimize the total generations fuel cost function. Optimal power flow may be single objective or multi objective function. In this thesis, an attempt is made to minimize the objective function with keeping the voltages magnitudes of all load buses, real output power of each generator bus and reactive power of each generator bus within their limits. The proposed method in this thesis is the Flexible Continuous Genetic Algorithm or in other words the Flexible Real-Coded Genetic Algorithm (RCGA) using the efficient GA's operators such as Rank Assignment (Weighted) Roulette Wheel Selection, Blending Method Recombination operator and Mutation Operator as well as Multi-Objective Minimization technique (MOM). This method has been tested and checked on the IEEE 30 buses test system and implemented on the 35-bus Super Iraqi National Grid (SING) system (400 KV). The results of OPF problem using IEEE 30 buses typical system has been compared with other researches.     


Author(s):  
Kazutoshi KURAMOTO ◽  
Fumiyasu MAKINOSHIMA ◽  
Anawat SUPPASRI ◽  
Fumihiko IMAMURA

Sign in / Sign up

Export Citation Format

Share Document