Flexible Genetic Algorithm Based Optimal Power Flow of Power Systems

2018 ◽  
Vol 24 (3) ◽  
pp. 84
Author(s):  
Hassan Abdullah Kubba ◽  
Mounir Thamer Esmieel

Nowadays, the power plant is changing the power industry from a centralized and vertically integrated form into regional, competitive and functionally separate units. This is done with the future aims of increasing efficiency by better management and better employment of existing equipment and lower price of electricity to all types of customers while retaining a reliable system. This research is aimed to solve the optimal power flow (OPF) problem. The OPF is used to minimize the total generations fuel cost function. Optimal power flow may be single objective or multi objective function. In this thesis, an attempt is made to minimize the objective function with keeping the voltages magnitudes of all load buses, real output power of each generator bus and reactive power of each generator bus within their limits. The proposed method in this thesis is the Flexible Continuous Genetic Algorithm or in other words the Flexible Real-Coded Genetic Algorithm (RCGA) using the efficient GA's operators such as Rank Assignment (Weighted) Roulette Wheel Selection, Blending Method Recombination operator and Mutation Operator as well as Multi-Objective Minimization technique (MOM). This method has been tested and checked on the IEEE 30 buses test system and implemented on the 35-bus Super Iraqi National Grid (SING) system (400 KV). The results of OPF problem using IEEE 30 buses typical system has been compared with other researches.     

Author(s):  
K. Padma ◽  
Yeshitela Shiferaw Maru

Incremental industrialization and urbanization is the cause of enhanced energy use as it increases the building of new lines and more inductive loads. As a result, the transmission system losses increased, and the magnitudes of voltage profile values deviated from the stated value, resulting in increased cost of active power generation. To mitigate these issues, adequate reactive power compensation in the transmission line and bus systems should be done. Reactive power is regulated by the proper position of the Flexible AC Transmission System (FACTS). Unified Power Flow Controller (UPFC) is a voltage converter system that increases the voltage profile and reduces loss. In this paper, the optimal power flow solution is considered using a FACTS device based on Multi Population Modified Jaya (MPMJ) optimization algorithm. Using the Analytical Hierarchy Process (AHP) system, the optimal position of the UPFC device is determined by considering the most useful objective function provided by priorities and weighting factors. Therefore, on the standard IEEE-57 bus test system, the proposed MPMJ optimization algorithm is implemented with UPFC for optimal fuel cost values of generation, real power loss, voltage deviation and sum of squared voltage stability index. The result obtained by the proposed algorithm is contrasted with the recent literature algorithm


2017 ◽  
Vol 18 (2) ◽  
pp. 75
Author(s):  
Rizki Firmansyah Setya Budi ◽  
Sarjiya Sarjiya ◽  
Sasongko Hadi Pramono

Tujuan dari pengoperasian sistem tenaga listrik adalah untuk memasok daya dengan kualitas baik dan biaya pembangkitan seminimal mungkin. Kualitas yang baik membutuhkan biaya yang lebih besar, sehingga untuk mencapai tujuan tersebut diperlukan optimasi dengan fungsi obyektif yang bertujuan untuk memaksimalkan kualitas sekaligus meminimalkan biaya. Penelitian ini bertujuanuntuk mendapatkan kondisi aliran daya optimal atau optimal power flow (OPF) dari segi biaya pembangkitan maupun kualitas tenaga listrik di suatu sistem kelistrikan dengan opsi nuklir pada waktu beban puncak dengan menggabungkan fungsi obyektif fuel cost dan flat voltage profile. Fungsi obyektif fuel cost bertujuan untuk meminimalkan biaya pembangkitan sedangkan fungsi obyektif flat voltage profile bertujuan untuk memaksimalkan kualitas dengan meminimalkan perbedaan/variasi tegangan dalam sebuah sistem. Penelitian dilakukan melalui studi literatur, penentuan fungsi obyektif optimasi, penggabungan fungsi objektif, simulasi menggunakan contoh kasus dan analisis sensitivitas. Contoh kasus menggunakan sistem IEEE 9 Bus yang telah ditambahkan fungsi bahan bakar PLTN, PLTU, dan PLTG. Simulasi menggunakan program bantu ETAP 12.6.0. Analisis sensitivitas dilakukan dengan menggunakan nilai pembobotan dari 0-100% untuk tiap fungsi obyektif. Hasil simulasi menunjukkan bahwa OPF dicapai pada faktor pembebanan 60% untuk fuel cost dan 40% untuk flat voltage profile. Biaya pembangkitan padakondisi optimal tersebut sebesar 7266 US$/jam dengan selisih tegangan maksimum minimumnya sebesar 2,85%. Pada sistem ini PLTU membangkitkan daya sebesar 133,2 MW + 22,1 MVar dan PLTG sebesar 80,7 MW + 13,8 MVar. Sedangkan PLTN membangkitkan daya sebesar 89,9 MW + 12,9 Mvar dan akan ekonomis jika membangkitkan daya kurang dari 90 MW.


2016 ◽  
Vol 17 (6) ◽  
pp. 631-647 ◽  
Author(s):  
S. Surender Reddy ◽  
P. R. Bijwe

AbstractThis paper proposes the efficient approaches for solving the Optimal Power Flow (OPF) problem using the meta-heuristic algorithms. Mathematically, OPF is formulated as non-linear equality and inequality constrained optimization problem. The main drawback of meta-heuristic algorithm based OPF is the excessive execution time required due to the large number of power flows needed in the solution process. The proposed efficient approaches uses the lower and upper bounds of objective function values. By using this approach, the number of power flows to be performed are reduced substantially, resulting in the solution speed up. The efficiently generated objective function bounds can result in the faster solutions of meta-heuristic algorithms. The original advantages of meta-heuristic algorithms, such as ability to handle complex non-linearities, discontinuities in the objective function, discrete variables handling, and multi-objective optimization, etc., are still available in the proposed efficient approaches. The proposed OPF formulation includes the active and reactive power generation limits, Valve Point Loading (VPL) and Prohibited Operating Zones (POZs) effects of generating units. The effectiveness of proposed approach is examined on IEEE 30, 118 and 300 bus test systems, and the simulation results confirm the efficiency and superiority of the proposed approaches over the other meta-heuristic algorithms. The proposed efficient approach is generic enough to use with any type of meta-heuristic algorithm based OPF.


2014 ◽  
Vol 63 (2) ◽  
pp. 227-245
Author(s):  
Bastin Solai Nazaran J. ◽  
K. Selvi

Abstract In a deregulated electricity market, it is important to dispatch the generation in an economical manner and to ensure security under different operating conditions. In this study evolutionary computation based solution for optimal power flow is attempted. Social welfare optimization is taken as the objective function, which includes generation cost, transmission cost and consumer benefit function. Transmission cost is calculated using Bialek’s power flow tracing method. Severity index is applied as a constraint to measure the security. The objective function is calculated for pre and post contingency periods. Real power generations, real power loads and transformer tap settings are selected as control variables. Different bilateral and multilateral conditions are considered for analysis. A Human Group Optimization algorithm is used to find the solution of the problem. The IEEE 30 bus system is taken as a test system.


2013 ◽  
Vol 457-458 ◽  
pp. 1236-1240
Author(s):  
Isaree Srikun ◽  
Lakkana Ruekkasaem ◽  
Pasura Aungkulanon

This paper presents a hybrid Cultural-based Differential Evolution for solving a multi-objective Optimal Power Flow (OPF) in support of power system operation and control . The multi-objective OPF was formulated for tackling with total generation cost and environmental impacts simultaneously. The proposed method was applied to the standard IEEE 30-bus test system. The results show that solving the multi-objective OPF problem by the Cultural-based Differential Evolution is more effective than other swarm intelligence methods in the literature.


2018 ◽  
Vol 2 (2) ◽  
pp. 47-50
Author(s):  
Aris Budiman

Permasalahan  OPF  terdiri dari  banyaknya objective function,  an/ara  lain economic dispatch, perencanaan  VAR,   dan juga  minimisasi rugi-rugi.  Untuk perencanaan  VAR perlu  mempertimbangkan biaya operasional rugi-rugi, sehingga membentuk sua/u permasalahan perencanaan dan operasiyang simultan.Di  tulisan  ini  secara  khusus  hanya  membahas  metode  OPF  ImprovedQuadratic Interior Point (IQIP). Metode  !QIP ini memiliki unjuk kerja yang secara umum lebih  baik  dibanding me/ode   generasi   sebelumnya,   yaitu  EQJP (Extended Quadratic Interior Point),  antara lain karena bisa menggunakan titik awal general dan pada  beberapa  pengujian  lebih cepat konvergen dibandingkan EQJP. Hal ini menyebabkan me/ode IQIP mampu menawarkan perbaikan besar di dalam kecepatan,keakuratan,  dan konvergensi  di dalam pemecahan masalah optimisasi yang  multi• objective function  dan multi-constraint.   Kemampuan memecahkan optimisasi global dari sistem terinterkoneksi  dan sis/em  terpartisi  untuk optimisasi /oka/juga lebih baik dari generasi  sebelumnya.Metode ini telah melalui pengujian terhadap sis/em 14 bus, 30 bus, dan 118 busIEEE. Efektivilas dari metode  ini telah dieva/uasi dengan cara dibandingkan denganprogram OPF yang berbasis EQIP (Extended Quadratic Interior Point) dan programMINOSyang cukup dikenal di dunia perencanaan sis/em


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256050
Author(s):  
Mohammad Zohrul Islam ◽  
Mohammad Lutfi Othman ◽  
Noor Izzri Abdul Wahab ◽  
Veerapandiyan Veerasamy ◽  
Saifur Rahman Opu ◽  
...  

This study presents a nature-inspired, and metaheuristic-based Marine predator algorithm (MPA) for solving the optimal power flow (OPF) problem. The significant insight of MPA is the widespread foraging strategy called the Levy walk and Brownian movements in ocean predators, including the optimal encounter rate policy in biological interaction among predators and prey which make the method to solve the real-world engineering problems of OPF. The OPF problem has been extensively used in power system operation, planning, and management over a long time. In this work, the MPA is analyzed to solve the single-objective OPF problem considering the fuel cost, real and reactive power loss, voltage deviation, and voltage stability enhancement index as objective functions. The proposed method is tested on IEEE 30-bus test system and the obtained results by the proposed method are compared with recent literature studies. The acquired results demonstrate that the proposed method is quite competitive among the nature-inspired optimization techniques reported in the literature.


Author(s):  
B. Ayachi ◽  
T. Boukra ◽  
N. Mezhoud

Introduction. In recent years, transmission systems comprise more direct current structures; their effects on alternating current power system may become significant and important. Also, multi-terminal direct current is favorable to the integration of large wind and solar power plants with a very beneficial ecological effect. The novelty of the proposed work consists in the effects of the aforementioned modern devices on transient stability, thus turn out to be an interesting research issue. In our view, they constitute a new challenge and an additional complexity for studying the dynamic behavior of modern electrical systems. Purpose. We sought a resolution to the problem of the transient stability constrained optimal power flow in the alternating current / direct current meshed networks. Convergence to security optimal power flow has been globally achieved. Methods. The solution of the problem was carried out in MATLAB environment, by an iterative combinatorial approach between optimized power flow computation and dynamic simulation. Results. A new transient stability constrained optimal power flow approach considering multi-terminal direct current systems can improve the transient stability after a contingency occurrence and operate the system economically within the system physical bounds. Practical value. The effectiveness and robustness of the proposed method is tested on the modified IEEE 14-bus test system with multi-objective optimization problem that reflect active power generation cost minimization and stability of the networks. It should be mentioned that active power losses are small in meshed networks relative to the standard network. The meshed networks led to a gain up to 46,214 % from the base case.


Sign in / Sign up

Export Citation Format

Share Document