Numerical study on thermal enhancement in hyperbolic tangent fluid with dust and hybrid nanoparticles

Author(s):  
M. Nawaz ◽  
Hadi Ali Madkhali ◽  
Maryam Haneef ◽  
Sayer Obaid Alharbi ◽  
M.K. Alaoui
2019 ◽  
Vol 13 (3) ◽  
pp. 5562-5587 ◽  
Author(s):  
M. S. Manjunath ◽  
R. Venkatesh ◽  
N. Madhwesh

The aim of this study is to determine the effect of U-shaped rib turbulator on the flow and heat transfer characteristics of flat plate solar air heater using two dimensional CFD analysis. The analysis is carried out using the CFD software tool ANSYS Fluent for the flow Reynolds number ranging from 9000 to 21,000.The relative pitch(P/e) of the U-shaped rib is varied as 5, 10, 25 and 40 for a fixed relative rib height of 0.0421. It is shown that the U-shaped rib augments the Nusselt number by about 1.76 times while the friction factor increased by about 1.95 times with reference to smooth duct for a relative pitch of 10 and 5 respectively. The maximum thermal enhancement factor is obtained as 1.5 for the configuration of P/e=25. A comparative analysis of U-shaped rib with circular rib reveals that the U-shaped rib turbulator is found to be more effective in providing heat transfer enhancement and has about 15% higher thermal enhancement factor as compared to circular turbulator.


Author(s):  
Siti Nur Alwani Salleh ◽  
Norfifah Bachok ◽  
Fadzilah Md Ali ◽  
Norihan Md Arifin

Present work deals with the numerical study of flow due to a continuously moving slender needle in a hybrid nanoliquid. The mathematical model of this work is developed in terms of nonlinear partial differential equations. By adopting the relevant similarity transformations, these equations are reduced to a system of nonlinear ordinary differential equations. Afterward, the solution is determined computationally via a bvp4c solver in MATLAB software. The influences of nanoparticle volume fraction, needle thickness and velocity ratio parameter on the rate of heat transfer, coefficient of skin friction, velocity as well as temperature distributions are illustrated in graphical form to describe the important features of the solution. The multiple solutions seem to appear when the needle opposes the free stream flow. It is revealed from the study that the composite (hybrid) nanoparticles augment the heat transfer rate between the flow and the needle in a certain domain of the velocity ratio parameter. The analysis of stability has proved that the upper branch solution represents stable flow, whereas the lower branch solution represents unstable flow.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6911
Author(s):  
Umar Nazir ◽  
Muhammad Sohail ◽  
Muhammad Bilal Hafeez ◽  
Marek Krawczuk

Nanoparticles are frequently used to enhance the thermal performance of numerous materials. This study has many practical applications for activities that have to minimize losses of energy due to several impacts. This study investigates the inclusion of ternary hybrid nanoparticles in a partially ionized hyperbolic tangent liquid passed over a stretched melting surface. The fluid motion equation is presented by considering the rotation effect. The thermal energy expression is derived by the contribution of Joule heat and viscous dissipation. Flow equations were modeled by using the concept of boundary layer theory, which occurs in the form of a coupled system of partial differential equations (PDEs). To reduce the complexity, the derived PDEs (partial differential equations) were transformed into a set of ordinary differential equations (ODEs) by engaging in similarity transformations. Afterwards, the converted ODEs were handled via a finite element procedure. The utilization and effectiveness of the methodology are demonstrated by listing the mesh-free survey and comparative analysis. Several important graphs were prepared to show the contribution of emerging parameters on fluid velocity and temperature profile. The findings show that the finite element method is a powerful tool for handling the complex coupled ordinary differential equation system, arising in fluid mechanics and other related dissipation applications in applied science. Furthermore, enhancements in the Forchheimer parameter and the Weissenberg number are necessary to control the fluid velocity.


Author(s):  
HM Deylami ◽  
N Amanifard ◽  
F Dolati ◽  
R Kouhikamali ◽  
K Mostajiri

To enhance the forced convection heat transfer of turbulent air stream inside the different corrugated channels, a numerical study has been conducted to explore the effect of electrohydrodynamic actuator. In this regard, a two-dimensional numerical approach has been developed to evaluate the average Nusselt number and friction factor. The results obtained show that, while the thermal enhancement factor without electrohydrodynamic is best with trapezoidal corrugation for flows in the low Reynolds number regime, the addition of electrohydrodynamic works best with rectangular corrugation.


Author(s):  
Daxiang Deng ◽  
Wei Wan ◽  
Yong Tang ◽  
Haoran Shao ◽  
Yue Huang

Sign in / Sign up

Export Citation Format

Share Document