Finding the optimal design of a Cantor fractal-based AC electric micromixer with film heating sheet by a three-objective optimization approach

Author(s):  
Honglin Lv ◽  
Xueye Chen ◽  
Xiaoyu Li ◽  
Yongbiao Ma ◽  
Dengying Zhang
2016 ◽  
Vol 715 ◽  
pp. 174-179 ◽  
Author(s):  
Chih Hsing Liu ◽  
Ying Chia Huang ◽  
Chen Hua Chiu ◽  
Yu Cheng Lai ◽  
Tzu Yang Pai

This paper presents the analysis methods for design of automotive bumper covers. The bumper covers are plastic structures attached to the front and rear ends of an automobile and are expected to absorb energy in a minor collision. One requirement in design of the bumper covers is to minimize the bumper deflection within a limited range under specific loadings at specific locations based on the design guideline. To investigate the stiffness performance under various loading conditions, a numerical model based on the explicit dynamic finite element analysis (FEA) using the commercial FEA solver, LS-DYNA, is developed to analyze the design. The experimental tests are also carried out to verify the numerical model. The thickness of the bumper cover is a design variable which usually varies from 3 to 4 mm depending on locations. To improve the stiffness of the bumper, an optimal design for the bumper under a pre-defined loading condition is identified by using the topology optimization approach, which is an optimal design method to obtain the optimal layout of an initial design domain under specific boundary conditions. The outcome of this study provides an efficient and cost-effective method to predict and improve the design of automotive bumper covers.


Author(s):  
W. Akl ◽  
M. Ruzzene ◽  
A. Baz

Abstract The optimal design parameters of fluid-loaded shells, provided with actively controlled stiffeners, are determined using a rational multi-criteria optimization approach. The adopted approach aims at simultaneously minimizing the shell vibration, associated sound radiation, weight of the stiffening rings, the control energy, and the cost of the shell/stiffeners assembly while maximizing the controllability and observability indices. A finite element model is presented to predict the vibration and noise radiation from cylindrical shells, with active stiffeners, into the surrounding fluid domain. The production cost as well as the life cycle and maintenance costs of the stiffened shells are computed using the Parametric Review of Information for Costing and Evaluation (PRICE) model. A Pareto/min-max multi-criteria optimization approach is then utilized to select the optimal locations and dimensions of the active stiffeners. Numerical examples are presented to compare the vibration and noise radiation characteristics of me optimally designed/controlled stiffened shells with the corresponding characteristics of plain un-stiffened and uncontrolled shells. The obtained results emphasize me importance of the adopted multi-criteria optimization approach in the design of quiet, low weight and low cost underwater shells which are suitable for various critical applications.


2018 ◽  
Vol 20 (6) ◽  
pp. 1401-1418 ◽  
Author(s):  
Amir Hatamkhani ◽  
Hosein Alizadeh

Abstract This paper deals with optimal design of a hydropower project's capacity when an analyst may take into account different economic analysis approaches and considerations including market price method, alternative thermal power plant method, externalities and clean development mechanism (CDM). We formulate the problem using mixed-integer nonlinear programming including an economic objective function and governing hydropower constraints. Due to non-convexity of the program, we employ an effective simulation-optimization approach coupling particle swarm optimization (PSO) and Water Evaluation and Planning (WEAP) software which we customize for hydropower simulation using scripting capabilities of the software. The developed modelling framework is applied to the Karun II hydropower project in Iran, where we aim CDM-based optimal design of the project and also compare two economic hydropower analysis methods, i.e. market price and alternative thermal plant. Results show how inclusion of externality and CDM can affect the project's design and measures.


1998 ◽  
Vol 120 (2) ◽  
pp. 165-174 ◽  
Author(s):  
L. Q. Tang ◽  
K. Pochiraju ◽  
C. Chassapis ◽  
S. Manoochehri

A methodology is presented for the design of optimal cooling systems for injection mold tooling which models the mold cooling as a nonlinear constrained optimization problem. The design constraints and objective function are evaluated using Finite Element Analysis (FEA). The objective function for the constrained optimization problem is stated as minimization of both a function related to part average temperature and temperature gradients throughout the polymeric part. The goal of this minimization problem is to achieve reduction of undesired defects as sink marks, differential shrinkage, thermal residual stress built-up, and part warpage primarily due to non-uniform temperature distribution in the part. The cooling channel size, locations, and coolant flow rate are chosen as the design variables. The constrained optimal design problem is solved using Powell’s conjugate direction method using penalty function. The cooling cycle time and temperature gradients are evaluated using transient heat conduction simulation. A matrix-free algorithm of the Galerkin Finite Element Method (FEM) with the Jacobi Conjugate Gradient (JCG) scheme is utilized to perform the cooling simulation. The optimal design methodology is illustrated using a case study.


Sign in / Sign up

Export Citation Format

Share Document