scholarly journals Worst-case and Distributional Robustness Analysis of a Thin Film Deposition Process

2015 ◽  
Vol 48 (8) ◽  
pp. 1126-1131 ◽  
Author(s):  
Shabnam Rasoulian ◽  
Luis A. Ricardez-Sandoval
Author(s):  
Monoj Kumar Singha ◽  
Vineet Rojwal

Thin film is used for sensing and electronic devices applications. Various techniques are used for thin film deposition. This chapter presents the Spray pyrolysis deposition technique used for the growth of thin films sensing and device material. Spray pyrolysis is an inexpensive method to grow good crystalline thin film compared to other thin film deposition techniques. The chapter gives an overview of the spray process used for thin film deposition. Basic setup for this process is explained. Parameters affecting the deposition process is explained, as are the various spray methods. Finally, some examples of spray pyrolysis in different applications like a gas sensor, UV photodetector, solar cell, photocatalysis, and supercapacitor are discussed.


2011 ◽  
Vol 189-193 ◽  
pp. 2032-2036 ◽  
Author(s):  
Zhi Jian Wang ◽  
Xiao Feng Shang

Taking Silicon tetrachloride (SiCl4) and hydrogen (H2) as the reaction gas, by the method of plasma-enhanced chemical vapor deposition (PECVD), this paper simulates the deposition process of polycrystalline silicon thin film on the glass substrates in the software FLUENT. Three dimensional physical model and mathematics model of the simulated area are established. The reaction mechanism including main reaction equation and several side equations is given during the simulation process. The simulation results predict the velocity field, temperature distribution, and concentration profiles in the PECVD reactor. The simulation results show that the deposition rate of silicon distribution is even along the circumference direction, and gradually reduced along the radius direction. The deposition rate is about 0.005kg/(m2•s) at the center. The simulated result is basically consistent with the practical one. It means that numerical simulation method to predict deposition process is feasible and the results are reliable in PECVD system.


2010 ◽  
Vol 65 (16) ◽  
pp. 4720-4731 ◽  
Author(s):  
Xinyu Zhang ◽  
Gangshi Hu ◽  
Gerassimos Orkoulas ◽  
Panagiotis D. Christofides

2013 ◽  
Vol 1524 ◽  
Author(s):  
Alexey Gavrikov ◽  
Andrey Knizhnik ◽  
Dmitry Krasikov ◽  
Boris Potapkin ◽  
Svetlana Selezneva ◽  
...  

ABSTRACTDeposition of semiconductor films is a key process for production of thin-film solar cells, such as CdTe or CIGS cells. In order to optimize photovoltaic properties of the film a comprehensive model of the deposition process should be build, which can relate deposition conditions and film properties. We have developed a multiscale model of deposition of CdTe film in close space sublimation (CSS) process. The model is based on kinetic Monte Carlo method on the rigid lattice, in which each site can be occupied by either Cd or Te atom. The model tabulates the energy of the site as a function of its local environment. These energies were obtained from first-principles calculates and then approximated with analytical formulas. Based on determined energies of each site we performed exchange (diffusion) processes using Metropolis algorithm. In addition the model included adsorption and desorption processes of Cd and Te2 species. The results of the model show that a steady-state structure of the surface layer is formed during film growth. The model can reproduce transition from film deposition to film etching depending on external conditions. Moreover, the model can predict deposition rates for non-stoichiometric gas compositions.


Sign in / Sign up

Export Citation Format

Share Document