scholarly journals Output-Feedback Nonlinear Adaptive Control Strategy of Three-phase AC/DC Boost Power Converter for On-line UPS Systems

2016 ◽  
Vol 49 (13) ◽  
pp. 324-329 ◽  
Author(s):  
M. Kissaoui ◽  
A.A.R. Al Tahir ◽  
A. Abouloifa ◽  
F.Z. Chaoui ◽  
Y. Abouelmahjoub ◽  
...  
Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1582
Author(s):  
Yonggang Wang ◽  
Yujin Lu ◽  
Ruimin Xiao

The system of a greenhouse is required to ensure a suitable environment for crops growth. In China, the Chinese solar greenhouse plays a crucial role in maintaining a proper microclimate environment. However, the greenhouse system is described with complex dynamic characteristics, such as multi-disturbance, parameter uncertainty, and strong nonlinearity. It is difficult for the conventional control method to deal with the above problems. To address these problems, a dynamic model of Chinese solar greenhouses was developed based on energy conservation laws, and a nonlinear adaptive control strategy combined with a Radial Basis Function neural network was presented to deal with temperature control. In this approach, nonlinear adaptive controller parameters were determined through the generalized minimum variance laws, while unmodeled dynamics were estimated by a Radial Basis Function neural network. The control strategy consisted of a linear adaptive controller, a neural network nonlinear adaptive controller, and a switching mechanism. The research results show that the mean errors were 0.8460 and 0.2967, corresponding to a conventional PID method and the presented nonlinear adaptive scheme, respectively. The standard errors of the conventional PID method and the nonlinear adaptive control strategy were 1.8480 and 1.3342, respectively. The experimental results fully prove that the presented control scheme achieves better control performance, which meets the actual requirements.


2021 ◽  
pp. 1-31
Author(s):  
S.H. Derrouaoui ◽  
Y. Bouzid ◽  
M. Guiatni

Abstract Recently, transformable Unmanned Aerial Vehicles (UAVs) have become a subject of great interest in the field of flying systems, due to their maneuverability, agility and morphological capacities. They can be used for specific missions and in more congested spaces. Moreover, this novel class of UAVs is considered as a viable solution for providing flying robots with specific and versatile functionalities. In this paper, we propose (i) a new design of a transformable quadrotor with (ii) generic modeling and (iii) adaptive control strategy. The proposed UAV is able to change its flight configuration by rotating its four arms independently around a central body, thanks to its adaptive geometry. To simplify and lighten the prototype, a simple mechanism with a light mechanical structure is proposed. Since the Center of Gravity (CoG) of the UAV moves according to the desired morphology of the system, a variation of the inertia and the allocation matrix occurs instantly. These dynamics parameters play an important role in the system control and its stability, representing a key difference compared with the classic quadrotor. Thus, a new generic model is developed, taking into account all these variations together with aerodynamic effects. To validate this model and ensure the stability of the designed UAV, an adaptive backstepping control strategy based on the change in the flight configuration is applied. MATLAB simulations are provided to evaluate and illustrate the performance and efficiency of the proposed controller. Finally, some experimental tests are presented.


2014 ◽  
Vol 29 (5) ◽  
pp. 639-652 ◽  
Author(s):  
Zarina Samigulina ◽  
Olga Shiryayeva ◽  
Galina Samigulina ◽  
Hassen Fourati

Sign in / Sign up

Export Citation Format

Share Document