generic modeling
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 22)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Julian Kullick ◽  
Christoph Hackl

<div><div><div><div><p>A not yet available look-up table (LUT) based optimal feedforward torque control (OFTC) method for squirrel- cage induction machines (SCIMs) is presented. It is based on: (i) a generic transformer-like machine model in an arbitrarily rotating (d,q)-reference frame, considering nonlinear flux linkages and iron losses in the stator laminations; (ii) machine identification by evaluating steady-state measurements over a grid of (d,q) stator currents, producing frequency-dependent machine maps for e.g. flux linkages, torque, iron resistance and efficiency; and (iii) numerical optimization and extraction of OFTC look- up tables for optimal stator current references depending on reference torque and electrical frequency. In order to increase reproducibility, a feedback temperature controller is employed to keep the stator winding temperature constant. Moreover, throughout the identification, the electrical frequency is kept con- stant (per data set) by adapting the machine speed accordingly using a speed-controlled prime mover; this way the impact of iron losses becomes more balanced than for constant speed operation. The presented measurement results confirm that compared to constant flux operation or scalar V/Hz control, efficiency can be increased particularly in part-load operation by up to 7 %.</p></div></div></div></div>


2021 ◽  
Vol 4 (S3) ◽  
Author(s):  
Rahul Khatri ◽  
Michael Schmidt ◽  
Rainer Gasper

AbstractIndustrial enterprises represent a significant portion of electricity consumers with the potential of providing demand-side energy flexibility from their production processes and on-site energy assets. Methods are needed for the active and profitable participation of such enterprises in the electricity markets especially with variable prices, where the energy flexibility available in their manufacturing, utility and energy systems can be assessed and quantified. This paper presents a generic model library equipped with optimal control for energy flexibility purposes. The components in the model library represent the different technical units of an industrial enterprise on material, media, and energy flow levels with their process constraints. The paper also presents a case study simulation of a steel-powder manufacturing plant using the model library. Its energy flexibility was assessed when the plant procured its electrical energy at fixed and variable electricity prices. In the simulated case study, flexibility use at dynamic prices resulted in a 6% cost reduction compared to a fixed-price scenario, with battery storage and the manufacturing system making the largest contributions to flexibility.


2021 ◽  
Author(s):  
Julian Kullick ◽  
Christoph Hackl

<div><div><div><div><p>A not yet available look-up table (LUT) based optimal feedforward torque control (OFTC) method for squirrel- cage induction machines (SCIMs) is presented. It is based on: (i) a generic transformer-like machine model in an arbitrarily rotating (d,q)-reference frame, considering nonlinear flux linkages and iron losses in the stator laminations; (ii) machine identification by evaluating steady-state measurements over a grid of (d,q) stator currents, producing frequency-dependent machine maps for e.g. flux linkages, torque, iron resistance and efficiency; and (iii) numerical optimization and extraction of OFTC look- up tables for optimal stator current references depending on reference torque and electrical frequency. In order to increase reproducibility, a feedback temperature controller is employed to keep the stator winding temperature constant. Moreover, throughout the identification, the electrical frequency is kept con- stant (per data set) by adapting the machine speed accordingly using a speed-controlled prime mover; this way the impact of iron losses becomes more balanced than for constant speed operation. The presented measurement results confirm that compared to constant flux operation or scalar V/Hz control, efficiency can be increased particularly in part-load operation by up to 7 %.</p></div></div></div></div>


2021 ◽  
Author(s):  
Julian Kullick ◽  
Christoph Hackl

<div><div><div><div><p>A not yet available look-up table (LUT) based optimal feedforward torque control (OFTC) method for squirrel- cage induction machines (SCIMs) is presented. It is based on: (i) a generic transformer-like machine model in an arbitrarily rotating (d,q)-reference frame, considering nonlinear flux linkages and iron losses in the stator laminations; (ii) machine identification by evaluating steady-state measurements over a grid of (d,q) stator currents, producing frequency-dependent machine maps for e.g. flux linkages, torque, iron resistance and efficiency; and (iii) numerical optimization and extraction of OFTC look- up tables for optimal stator current references depending on reference torque and electrical frequency. In order to increase reproducibility, a feedback temperature controller is employed to keep the stator winding temperature constant. Moreover, throughout the identification, the electrical frequency is kept con- stant (per data set) by adapting the machine speed accordingly using a speed-controlled prime mover; this way the impact of iron losses becomes more balanced than for constant speed operation. The presented measurement results confirm that compared to constant flux operation or scalar V/Hz control, efficiency can be increased particularly in part-load operation by up to 7 %.</p></div></div></div></div>


SIMULATION ◽  
2021 ◽  
pp. 003754972110309
Author(s):  
Mohd Shoaib ◽  
Varun Ramamohan

We present discrete-event simulation models of the operations of primary health centers (PHCs) in the Indian context. Our PHC simulation models incorporate four types of patients seeking medical care: outpatients, inpatients, childbirth cases, and patients seeking antenatal care. A generic modeling approach was adopted to develop simulation models of PHC operations. This involved developing an archetype PHC simulation, which was then adapted to represent two other PHC configurations, differing in numbers of resources and types of services provided, encountered during PHC visits. A model representing a benchmark configuration conforming to government-mandated operational guidelines, with demand estimated from disease burden data and service times closer to international estimates (higher than observed), was also developed. Simulation outcomes for the three observed configurations indicate negligible patient waiting times and low resource utilization values at observed patient demand estimates. However, simulation outcomes for the benchmark configuration indicated significantly higher resource utilization. Simulation experiments to evaluate the effect of potential changes in operational patterns on reducing the utilization of stressed resources for the benchmark case were performed. Our analysis also motivated the development of simple analytical approximations of the average utilization of a server in a queueing system with characteristics similar to the PHC doctor/patient system. Our study represents the first step in an ongoing effort to establish the computational infrastructure required to analyze public health operations in India and can provide researchers in other settings with hierarchical health systems, a template for the development of simulation models of their primary healthcare facilities.


2021 ◽  
pp. 1-31
Author(s):  
S.H. Derrouaoui ◽  
Y. Bouzid ◽  
M. Guiatni

Abstract Recently, transformable Unmanned Aerial Vehicles (UAVs) have become a subject of great interest in the field of flying systems, due to their maneuverability, agility and morphological capacities. They can be used for specific missions and in more congested spaces. Moreover, this novel class of UAVs is considered as a viable solution for providing flying robots with specific and versatile functionalities. In this paper, we propose (i) a new design of a transformable quadrotor with (ii) generic modeling and (iii) adaptive control strategy. The proposed UAV is able to change its flight configuration by rotating its four arms independently around a central body, thanks to its adaptive geometry. To simplify and lighten the prototype, a simple mechanism with a light mechanical structure is proposed. Since the Center of Gravity (CoG) of the UAV moves according to the desired morphology of the system, a variation of the inertia and the allocation matrix occurs instantly. These dynamics parameters play an important role in the system control and its stability, representing a key difference compared with the classic quadrotor. Thus, a new generic model is developed, taking into account all these variations together with aerodynamic effects. To validate this model and ensure the stability of the designed UAV, an adaptive backstepping control strategy based on the change in the flight configuration is applied. MATLAB simulations are provided to evaluate and illustrate the performance and efficiency of the proposed controller. Finally, some experimental tests are presented.


2021 ◽  
Vol 17 (5) ◽  
pp. e1008921
Author(s):  
Jasia King ◽  
Kerbaï Saïd Eroumé ◽  
Roman Truckenmüller ◽  
Stefan Giselbrecht ◽  
Ann E. Cowan ◽  
...  

Cellular and intracellular processes are inherently complex due to the large number of components and interactions, which are often nonlinear and occur at different spatiotemporal scales. Because of this complexity, mathematical modeling is increasingly used to simulate such systems and perform experiments in silico, many orders of magnitude faster than real experiments and often at a higher spatiotemporal resolution. In this article, we will focus on the generic modeling process and illustrate it with an example model of membrane lipid turnover.


2021 ◽  
pp. 41-64
Author(s):  
R. Villena-Ruiz ◽  
A. Honrubia-Escribano ◽  
E. Artigao-Andicoberry ◽  
S. Martín-Martínez ◽  
E. Gómez-Lázaro

Author(s):  
Pauline Ribot ◽  
Yannick Pencol´ ◽  
Michel Combacau

Maintenance efficiency of complex industrial systems is an important economical and business issue. Main difficulties come from the choice of maintenance actions. A wrong choice can lead to maintenance costs that are not acceptable. In this paper, we propose a generic health monitoring system that integrates some diagnostic and prognostic capabilities to determine the current and future state of a large and complex system such as an aircraft. The diagnostic function aims at identifying faulty components that may cause global system failures. The prognostic function estimates the remaining time until the next global system failure. A formal and generic modeling framework for a complex system encapsulating the knowledge required to get the consistent coordination of the diagnostic and prognostic functions is presented. We propose in this framework to take into account component redundancies which is common in systems like aircrafts. Moreover, an original coupling of diagnosis and prognosis is established based on the characterization of the system operational modes and on a decentralized architecture of the monitoring system.


Sign in / Sign up

Export Citation Format

Share Document