scholarly journals Stabilization of a ROV in Three-dimensional Space Using an Underwater Acoustic Positioning System

2019 ◽  
Vol 52 (17) ◽  
pp. 117-122
Author(s):  
Simon Pedersen ◽  
Jesper Liniger ◽  
Fredrik F. Sørensen ◽  
Kenneth Schmidt ◽  
Malte von Benzon ◽  
...  
2021 ◽  
Vol 2074 (1) ◽  
pp. 012066
Author(s):  
Ti Liu ◽  
Hongwei Mao ◽  
Dong Lei ◽  
Boming Li ◽  
Dahong Fu

Abstract Aiming at the connection of pipelines during the GIS installation process of power transmission and transformation projects, this subject designs and produces an intelligent GIS installation system based on 6-DOF parallel multi-axis motion control, which is applied to practical applications. The intelligent installation system can realize six independent motions and their combined motions in three-dimensional space. Relying on the multi-dimensional visual positioning system, through the six-degree-of-freedom parallel multi-axis motion control system, the precise docking during the installation of the precision GIS cavity can be realized.


Author(s):  
Lin Zhao ◽  
Xiaobo Chen ◽  
Yong Hao ◽  
Chengcai Lv ◽  
Lianhua Yu

This paper addresses the problem of assessing and optimizing acoustic positioning system for underwater target localization with range measurements only. We present a new three-dimensional assessment model to assess the optimal geometric beacon formation whether meet user needs. For the sake of mathematical tractability, it is assumed that the measurements of the range between the target and beacons are corrupted with white Gaussian noise with variance is distance-dependent. Then by adopting dilution of precision (DOP) parameters in the assessment model, the relationship between DOP parameters and positioning accuracy is derived. In addition, the optimal geometric beacon formation that will yield the best performance is achieved by minimizing the values of geometric dilution of precision (GDOP) on condition that the position of target is known and fixed. Next, in order to make sure whether the estimate positioning accuracy over interesting region satisfy the precision needed by the users, geometric positioning accuracy (GPA), horizonal positioning accuracy (HPA) and vertical positioning accuracy (VPA) are utilized to assess the optimal geometric beacon formation. Simulation examples are designed to illustrate the exactness of the conclusion. Unlike other work which only use GDOP to optimize the formation and cannot assess the performance of the specified dimensions, this new three-dimensional assessment model can assess the optimal geometric beacon formation in each dimension for any point in three-dimensional space, which can provide users with guidance advices to optimize performance of every specified dimension.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2019 ◽  
Author(s):  
Jumpei Morimoto ◽  
Yasuhiro Fukuda ◽  
Takumu Watanabe ◽  
Daisuke Kuroda ◽  
Kouhei Tsumoto ◽  
...  

<div> <div> <div> <p>“Peptoids” was proposed, over decades ago, as a term describing analogs of peptides that exhibit better physicochemical and pharmacokinetic properties than peptides. Oligo-(N-substituted glycines) (oligo-NSG) was previously proposed as a peptoid due to its high proteolytic resistance and membrane permeability. However, oligo-NSG is conformationally flexible and is difficult to achieve a defined shape in water. This conformational flexibility is severely limiting biological application of oligo-NSG. Here, we propose oligo-(N-substituted alanines) (oligo-NSA) as a new peptoid that forms a defined shape in water. A synthetic method established in this study enabled the first isolation and conformational study of optically pure oligo-NSA. Computational simulations, crystallographic studies and spectroscopic analysis demonstrated the well-defined extended shape of oligo-NSA realized by backbone steric effects. The new class of peptoid achieves the constrained conformation without any assistance of N-substituents and serves as an ideal scaffold for displaying functional groups in well-defined three-dimensional space, which leads to effective biomolecular recognition. </p> </div> </div> </div>


Author(s):  
Raimo Hartmann ◽  
Hannah Jeckel ◽  
Eric Jelli ◽  
Praveen K. Singh ◽  
Sanika Vaidya ◽  
...  

AbstractBiofilms are microbial communities that represent a highly abundant form of microbial life on Earth. Inside biofilms, phenotypic and genotypic variations occur in three-dimensional space and time; microscopy and quantitative image analysis are therefore crucial for elucidating their functions. Here, we present BiofilmQ—a comprehensive image cytometry software tool for the automated and high-throughput quantification, analysis and visualization of numerous biofilm-internal and whole-biofilm properties in three-dimensional space and time.


Sign in / Sign up

Export Citation Format

Share Document