scholarly journals Effect of Direct Slicing on Precision Additive Manufacturing

2020 ◽  
Vol 53 (2) ◽  
pp. 11982-11987
Author(s):  
Hossein Gohari ◽  
Ahmad Barari ◽  
Hossam Kishawy ◽  
Marcos S.G. Tsuzuki
2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744016 ◽  
Author(s):  
Weilin Chen ◽  
Tao Yang ◽  
Ruixin Yang

Additive manufacturing technology is a systematic process based on discrete-accumulation principle, which is derived by the dimension of parts. Aiming at the dimension mathematical model and slicing problems in additive manufacturing process, the constitutive relations between micro-beam plasma welding parameters and the dimension of part were investigated. The slicing algorithm and slicing were also studied based on the dimension characteristics. By using the direct slicing algorithm according to the geometric characteristics of model, a hollow thin-wall spherical part was fabricated by 3D additive manufacturing technology using micro-beam plasma.


2018 ◽  
Vol 24 (4) ◽  
pp. 709-721 ◽  
Author(s):  
Jiawei Feng ◽  
Jianzhong Fu ◽  
Zhiwei Lin ◽  
Ce Shang ◽  
Bin Li

Purpose T-spline is the latest powerful modeling tool in the field of computer-aided design. It has all the merits of non-uniform rational B-spline (NURBS) whilst resolving some flaws in it. This work applies T-spline surfaces to additive manufacturing (AM). Most current AM products are based on Stereolithograph models. It is a kind of discrete polyhedron model with huge amounts of data and some inherent defects. T-spline offers a better choice for the design and manufacture of complex models. Design/methodology/approach In this paper, a direct slicing algorithm of T-spline surfaces for AM is proposed. Initially, a T-spline surface is designed in commercial software and saved as a T-spline mesh file. Then, a numerical method is used to directly calculate all the slicing points on the surface. To achieve higher manufacturing efficiency, an adaptive slicing algorithm is applied according to the geometrical properties of the T-spline surface. Findings Experimental results indicate that this algorithm is effective and reliable. The quality of AM can be enhanced at both the designing and slicing stages. Originality/value The T-spline and direct slicing algorithm discussed here will be a powerful supplement to current technologies in AM.


2020 ◽  
Vol 26 (1) ◽  
pp. 164-175 ◽  
Author(s):  
Bin Li ◽  
Jianzhong Fu ◽  
Yongjie Jessica Zhang ◽  
Weiyi Lin ◽  
Jiawei Feng ◽  
...  

Purpose Majority of the existing direct slicing methods have generated precise slicing contours from different surface representations, they do not carry any interior information. Whereas, heterogeneous solids are highly preferable for designing and manufacturing sophisticated models. To directly slice heterogeneous solids for additive manufacturing (AM), this study aims to present an algorithm using octree-based subdivision and trivariate T-splines. Design/methodology/approach This paper presents a direct slicing algorithm for heterogeneous solids using T-splines, which can be applied to AM based on the fused deposition modeling (FDM) technology. First, trivariate T-splines are constructed using a harmonic field with the gradient direction aligning with the slicing direction. An octree-based subdivision algorithm is then used to directly generate the sliced layers with heterogeneous materials. For FDM-based AM applications, the heterogeneous materials of each sliced layer are discretized into a finite number of partitions. Finally, boundary contours of each separated partition are extracted and paired according to the rules of CuraEngine to generate the scan path for FDM machines equipped with multi-nozzles. Findings The experimental results demonstrate that the proposed algorithm is effective and reliable, especially for solid objects with multiple materials, which could maintain the model integrity throughout the process from the original representation to the final product in AM. Originality/value Directly slicing heterogeneous solid using trivariate T-splines will be a powerful supplement to current technologies in AM.


2013 ◽  
Vol 22 (03) ◽  
pp. 180-187 ◽  
Author(s):  
J. Henke ◽  
J. T. Schantz ◽  
D. W. Hutmacher

ZusammenfassungDie Behandlung ausgedehnter Knochen-defekte nach Traumata oder durch Tumoren stellt nach wie vor eine signifikante Heraus-forderung im klinischen Alltag dar. Aufgrund der bestehenden Limitationen aktueller Therapiestandards haben Knochen-Tissue-Engineering (TE)-Verfahren zunehmend an Bedeutung gewonnen. Die Entwicklung von Additive-Manufacturing (AM)-Verfahren hat dabei eine grundlegende Innovation ausgelöst: Durch AM lassen sich dreidimensionale Gerüstträger in einem computergestützten Schichtfür-Schicht-Verfahren aus digitalen 3D-Vorlagen erstellen. Wurden mittels AM zunächst nur Modelle zur haptischen Darstellung knöcherner Pathologika und zur Planung von Operationen hergestellt, so ist es mit der Entwicklung nun möglich, detaillierte Scaffoldstrukturen zur Tissue-Engineering-Anwendung im Knochen zu fabrizieren. Die umfassende Kontrolle der internen Scaffoldstruktur und der äußeren Scaffoldmaße erlaubt eine Custom-made-Anwendung mit auf den individuellen Knochendefekt und die entsprechenden (mechanischen etc.) Anforderungen abgestimmten Konstrukten. Ein zukünftiges Feld ist das automatisierte ultrastrukturelle Design von TE-Konstrukten aus Scaffold-Biomaterialien in Kombination mit lebenden Zellen und biologisch aktiven Wachstumsfaktoren zur Nachbildung natürlicher (knöcherner) Organstrukturen.


Sign in / Sign up

Export Citation Format

Share Document