A role for fosfomycin treatment in children for prevention of haemolytic–uraemic syndrome accompanying Shiga toxin-producing Escherichia coli infection

2015 ◽  
Vol 46 (5) ◽  
pp. 586-589 ◽  
Author(s):  
Hitoshi Tajiri ◽  
Junichiro Nishi ◽  
Kosuke Ushijima ◽  
Toshiaki Shimizu ◽  
Takashi Ishige ◽  
...  
2000 ◽  
Vol 124 (2) ◽  
pp. 215-220 ◽  
Author(s):  
B. DECLUDT ◽  
P. BOUVET ◽  
P. MARIANI-KURKDJIAN ◽  
F. GRIMONT ◽  
P. A. D. GRIMONT ◽  
...  

We conducted a study to determine the incidence of haemolytic uraemic syndrome (HUS) in children in France and to assess the role of Shiga-toxin-producing Escherichia coli (STEC) infection in the aetiology of HUS. In collaboration with the Société de Néphrologie Pédiatrique we undertook a retrospective review of all cases of HUS hospitalized from January 1993 to March 1995 and a 1-year prospective study (April 1995–March 1996) of epidemiological and microbiological features of cases of HUS. The polymerase chain reaction (PCR) procedure was used to detect stx, eae, e-hlyA genes directly from case stool samples. Serum samples from cases were examined for antibodies to lipopolysaccharide (LPS) of 26 major STEC serogroups. Two hundred and eighty-six cases were reported. The average incidence per year was 0·7/105 children < 15 years and 1·8/105 children < 5 years. During the prospective study, 122/130 cases were examined for evidence of STEC infection using PCR and/or serological assays and 105 (86%) had evidence of STEC infection. Serum antibodies to E. coli O157 LPS were detected in 79 (67%) cases tested. In conclusion, this study showed that STEC infection is an important cause of HUS in children in France, with a high proportion related to the O157 serogroup.


2015 ◽  
Vol 144 (5) ◽  
pp. 952-961 ◽  
Author(s):  
J. FUJII ◽  
T. MIZOUE ◽  
T. KITA ◽  
H. KISHIMOTO ◽  
K. JOH ◽  
...  

SUMMARYShiga-toxin-producing Escherichia coli (STEC) infections usually cause haemolytic uraemic syndrome (HUS) equally in male and female children. This study investigated the localization of globotriaosylceramide (Gb3) in human brain and kidney tissues removed from forensic autopsy cases in Japan. A fatal case was used as a positive control in an outbreak of diarrhoeal disease caused by STEC O157:H7 in a kindergarten in Urawa in 1990. Positive immunodetection of Gb3 was significantly more frequent in female than in male distal and collecting renal tubules. To correlate this finding with a clinical outcome, a retrospective analysis of the predictors of renal failure in the 162 patients of two outbreaks in Japan was performed: one in Tochigi in 2002 and the other in Kagawa Prefecture in 2005. This study concludes renal failure, including HUS, was significantly associated with female sex, and the odds ratio was 4·06 compared to male patients in the two outbreaks. From 2006 to 2009 in Japan, the risk factor of HUS associated with STEC infection was analysed. The number of males and females and the proportion of females who developed HUS were calculated by age and year from 2006 to 2009. In 2006, 2007 and 2009 in adults aged >20 years, adult women were significantly more at risk of developing HUS in Japan.


2016 ◽  
Vol 144 (15) ◽  
pp. 3305-3315 ◽  
Author(s):  
A. KUEHNE ◽  
M. BOUWKNEGT ◽  
A. HAVELAAR ◽  
A. GILSDORF ◽  
P. HOYER ◽  
...  

SUMMARYShiga toxin-producingEscherichia coli(STEC) is an important cause of gastroenteritis (GE) and haemolytic uraemic syndrome (HUS). Incidence of STEC illness is largely underestimated in notification data, particularly of serogroups other than O157 (‘non-O157’). Using HUS national notification data (2008–2012, excluding 2011), we modelled true annual incidence of STEC illness in Germany separately for O157 and non-O157 STEC, taking into account the groups’ different probabilities of causing bloody diarrhoea and HUS, and the resulting difference in their under-ascertainment. Uncertainty of input parameters was evaluated by stochastic Monte Carlo simulations. Median annual incidence (per 100 000 population) of STEC-associated HUS and STEC-GE was estimated at 0·11 [95% credible interval (CrI) 0·08-0·20], and 35 (95% CrI 12-145), respectively. German notification data underestimated STEC-associated HUS and STEC-GE incidences by factors of 1·8 and 32·3, respectively. Non-O157 STEC accounted for 81% of all STEC-GE, 51% of all bloody STEC-GE and 32% of all STEC-associated HUS cases. Non-O157 serogroups dominate incidence of STEC-GE and contribute significantly to STEC-associated HUS in Germany. This might apply to many other countries considering European surveillance data on HUS. Non-O157 STEC should be considered in parallel with STEC O157 when searching aetiology in patients with GE or HUS, and accounted for in modern surveillance systems.


2018 ◽  
Vol 138 (5) ◽  
pp. 279-281 ◽  
Author(s):  
MTR Pereboom ◽  
D Todkill ◽  
E Knapper ◽  
C Jenkins ◽  
J Hawker ◽  
...  

In June 2017, an outbreak of Shiga toxin–producing Escherichia coli (STEC) O157 infection with phage type 21/28 and identical genotypic profiles involving three children from Staffordshire was reported. Two cases developed haemolytic uraemic syndrome (HUS). Person-to-person transmission via a shared inflatable home paddling pool was the most likely route of infection, following contamination by the first case. The source of infection in the first case was not identified. We recommend that individuals experiencing gastroenteritis should not bathe in paddling pools and that water should be changed at frequent intervals throughout the day to minimise the spread of infection.


2020 ◽  
pp. 5027-5032
Author(s):  
Edwin K.S. Wong ◽  
David Kavanagh

Haemolytic uraemic syndrome (HUS) is a thrombotic microangiopathy characterized by the triad of thrombocytopenia, microangiopathic haemolytic anaemia, and acute kidney injury. It is most often caused by Shiga toxin-producing Escherichia coli (STEC-HUS), and any HUS not caused by this is often termed atypical HUS (aHUS). aHUS may be caused by an underlying complement system abnormality (primary aHUS) or by a range of precipitating events, such as infections or drugs (secondary aHUS). Management of STEC-HUS is supportive. In aHUS, plasma exchange is the initial treatment of choice until ADAMTS13 activity is available to exclude thrombotic thrombocytopenic purpura as a diagnosis. Once this has been done, eculizumab should be instigated as soon as possible.


Sign in / Sign up

Export Citation Format

Share Document