scholarly journals Evaluation of BP-M-CPF4 polyhydroxyalkanoate (PHA) synthase on the production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil using Cupriavidus necator transformants

2020 ◽  
Vol 159 ◽  
pp. 250-257 ◽  
Author(s):  
Hua Tiang Tan ◽  
Min Fey Chek ◽  
Manoj Lakshmanan ◽  
Choon Pin Foong ◽  
Toshio Hakoshima ◽  
...  
2011 ◽  
Vol 77 (9) ◽  
pp. 2847-2854 ◽  
Author(s):  
Charles F. Budde ◽  
Sebastian L. Riedel ◽  
Laura B. Willis ◽  
ChoKyun Rha ◽  
Anthony J. Sinskey

ABSTRACTThe polyhydroxyalkanoate (PHA) copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(HB-co-HHx)] has been shown to have potential to serve as a commercial bioplastic. Synthesis of P(HB-co-HHx) from plant oil has been demonstrated with recombinantRalstonia eutrophastrains expressing heterologous PHA synthases capable of incorporating HB and HHx into the polymer. With these strains, however, short-chain-length fatty acids had to be included in the medium to generate PHA with high HHx content. Our group has engineered twoR. eutrophastrains that accumulate high levels of P(HB-co-HHx) with significant HHx content directly from palm oil, one of the world's most abundant plant oils. The strains express a newly characterized PHA synthase gene from the bacteriumRhodococcus aetherivoransI24. Expression of an enoyl coenzyme A (enoyl-CoA) hydratase gene (phaJ) fromPseudomonas aeruginosawas shown to increase PHA accumulation. Furthermore, varying the activity of acetoacetyl-CoA reductase (encoded byphaB) altered the level of HHx in the polymer. The strains with the highest PHA titers utilized plasmids for recombinant gene expression, so anR. eutrophaplasmid stability system was developed. In this system, the essential pyrroline-5-carboxylate reductase geneproCwas deleted from strain genomes and expressed from a plasmid, making the plasmid necessary for growth in minimal media. This study resulted in two engineered strains for production of P(HB-co-HHx) from palm oil. In palm oil fermentations, one strain accumulated 71% of its cell dry weight as PHA with 17 mol% HHx, while the other strain accumulated 66% of its cell dry weight as PHA with 30 mol% HHx.


2008 ◽  
Vol 86 (6) ◽  
pp. 621-627 ◽  
Author(s):  
Jun Mifune ◽  
Satoshi Nakamura ◽  
Toshiaki Fukui

Previous studies have demonstrated that heterologous expression of PHA synthase from Aeromonas caviae (PhaCAc), capable of accepting (R)-3-hydroxyacyl-CoA of C4–C7 as substrates, could confer the ability to PHA-negative mutant of Cupriavidus necator PHB-4 to synthesize poly((R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate) [P(3HB-co-3HHx)] from vegetable oils. The mutation point within pha operon in PHB-4 was determined to be a single nonsense mutation within the PHA synthase gene (phaCCn), suggesting the much lower β-ketothiolase and NADPH-dependent acetoacetyl-CoA reductase activities observed in this strain would be a polar effect of the mutation. For further efficient biosynthesis of P(3HB-co-3HHx) copolyester, C. necator wild strain H16 was engineered by homologous recombination targeting the chromosomal phaCCn, and the PHA productivity was compared with previous PHB–4-derived strain harboring phaCAc on a multi-copy plasmid (PHB–4/pJRDEE32d13). A strain H16CAc, in which phaCCn was substituted for phaCAc on the chromosome, could produce P(3HB-co-3HHx) from soybean oil with high productivity, but the 3HHx fraction in the accumulated polymer was decreased. Meanwhile, H16ΔC/pJRDEE32d13, that lost region for the original synthase gene and expresses exochromosomal phaCAc, grew and accumulated PHA with similar properties to the PHB–4-derived strain. The results of enzyme assay suggested that low β-ketothiolase activity might be relevant for decrease of growth ability accompanied by increase of 3HHx composition when soybean oil was fed as a sole carbon source. Key words: poly(hydroxyalkanoates), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), PHA synthase, Cupriavidus necator, vegetable oil.


2021 ◽  
Author(s):  
Nils Jonathan Helmuth Averesch ◽  
Vincent Evan Pane ◽  
Frauke Kracke ◽  
Marika Ziesack ◽  
Shannon Noel Nangle ◽  
...  

Synthetic materials are integral components of consumables and durable goods and indispensable in our modern world. Polyesters are the most versatile bulk- and specialty-polymers, but their production is not sustainable, and their fate at end-of-life of great concern. Bioplastics are highly regarded alternatives but have shortcomings in material properties and commercial competitiveness with conventional synthetic plastics. These constraints have limited the success in global markets. Enabling bio-production of advanced bioplastics with superior properties from waste-derived feedstocks could change this. We have created microbial cell factories that can produce a range of aliphatic and aromatic polyesters. A DphaC1 mutant of Cupriavidus necator H16 was complemented with hydroxyacyl-CoA transferases from either Clostridium propionicum (pct540) or Clostridium difficile (hadA), respectively. These were combined with a mutant PHA synthase (phaC1437) from Pseudomonas sp. MBEL 6 19, which rescued the PHA- phenotype of the knock-out mutant and allowed polymerization of various hydroxy carboxylates, including phloretic acid. This is the first-time, incorporation of an aromatic ring in the backbone of a biological polyester was achieved. Polymers contain para-hydroxyphenyl subunits are structurally analogous to synthetic aromatic polyesters like PET and high-strength polyarylates. In a further advance, the transgenic strain was cultivated in a bio-electrochemical system under autotrophic conditions, enabling synthesis of aromatic bio-polyesters from H2 and O2 generated in situ, while assimilating CO2. Follow-up elementary flux-mode analysis established the feasibility of de novo production of twenty different polyesters from five different carbon- and energy-sources. This comprehensive study opens the door to sustainable bio-production of high-performance thermoplastics and thermosets.


2018 ◽  
Vol 44 (2) ◽  
pp. 56-65
Author(s):  
M. E. Bondarchuk ◽  
◽  
V. V. Kozlova ◽  

2015 ◽  
Vol 11 (1) ◽  
Author(s):  
Zulaicha Dwi Hastuti ◽  
Dwi Husodo Prasetyo ◽  
Erlan Rosyadi
Keyword(s):  
Palm Oil ◽  

Asam lemak bebas (alb) dalam Crude Palm Oil (CPO) merupakan salah satu parameter kualitas CPO.Munculnya asamlemak bebas ini dapat berasal dari faktor pemanenan dan penyimpanan. Asamlemak bebas yang tinggi dalam CPO dapat menurunkan harga CPO. Minyak mentah sawit inimerupakan salah satu sumber energi terbarukan yang diolah, antara lain, menjadi pure plant oil (PPO)dan biodiesel. Namun,masalah utama CPO sebagai bahan baku PPO dan biodiesel adalah asamlemak bebas. Asam lemak bebas dalam CPO yang dapat digunakan untuk PPO dan biodiesel tidakboleh lebih dari 1%. Oleh karena itu, dalam penelitian ini dilakukan usaha untuk menurunkan asamlemak bebas dalam CPO sehingga dapat dimanfaatkan sebagai bahan bakar. Metoda yang digunakanadalah esterifikasi. Asam lemak bebas dikonversi menjadi metil ester. Campuran metil ester dengantrigliserida ini merupakan bahan bakar yang dapat digunakan untuk pengganti BBM. Kondisi yangoptimal untuk proses esterifikasi CPO alb tinggi adalah sebagai berikut : suhu 65oC, waktu 360 menit,katalis 0,25%, dan perbandingan mol metanol 8:1. Dengan proses ini, asam lemak bebas dapatditurunkan menjadi 2,76% (konversi 89,39%). Pada kondisi yang sama dengan katalis yangditingkatkan menjadi 0,5%, asam lemak bebas dapat diturunkan menjadi 1,86% (konversi 92,85%).Pada kondisi yang sama, dengan katalis yang ditingkatkan menjadi 1%, asam lemak bebas dapatditurunkan menjadi 1,75% (konversi 93,28%).Kata kunci: asam lemak bebas, CPO, esterifikasi, PPO, biodiesel


Sign in / Sign up

Export Citation Format

Share Document