Facile formation of injectable quaternized chitosan/tannic acid hydrogels with antibacterial and ROS scavenging capabilities for diabetic wound healing

Author(s):  
Wenhao Pan ◽  
Xiaoliang Qi ◽  
Yajing Xiang ◽  
Shengye You ◽  
Erya Cai ◽  
...  
2021 ◽  
Author(s):  
Ya Guan ◽  
Hong Niu ◽  
Zhongting Liu ◽  
Yu Dang ◽  
Jie Shen ◽  
...  

Non-healing diabetic wound is one of the most common complications for diabetic patients. Chronic hypoxia is among the prominent factors that delay the wound healing process. Therefore, sustained oxygenation to alleviate hypoxia is hypothesized to promote diabetic wound healing. Yet it cannot be achieved by current clinical approaches including hyperbaric oxygen therapy. Herein, we developed a sustained oxygenation system consisting of oxygen-release microspheres and a reactive oxygen species (ROS)-scavenging hydrogel. The hydrogel was used to capture the ROS that is elevated in the diabetic wounds, and that may be generated due to oxygen release. The sustainedly released oxygen augmented survival and migration of keratinocytes and dermal fibroblasts; promoted angiogenic growth factor expression, and angiogenesis in the diabetic wounds; and decreased M1 macrophage density. These effects led to a significant increase of wound closure rate. These findings reveal that sustained oxygenation alone without using drugs is capable of healing diabetic wounds.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yao Qi ◽  
Kun Qian ◽  
Jin Chen ◽  
Yifeng E ◽  
Yijie Shi ◽  
...  

Abstract Background As recovery time of diabetic wound injury is prolonged by the production of detrimental factors, including reactive oxygen species (ROS) and inflammatory cytokines, attenuating the oxidative stress and inflammatory reactions in the microenvironment of the diabetic wound site would be significant. Experimental design In our study, we prepared thermoreversible, antibacterial zeolite-based nanoparticles loaded hydrogel to promote diabetic wound healing via the neutralization of detrimental factors such as inflammatory cytokines and ROS. Results The cerium (Ce)-doped biotype Linde type A (LTA) zeolite nanoparticles synergistically eliminated mitochondrial ROS and neutralized free inflammatory factors, thus remodeling the anti-inflammatory microenvironment of the wound and enhancing angiogenesis. Moreover, the thermoreversible hydrogel composed of Pluronic F127 and chitosan demonstrated strong haemostatic and bactericidal behavior. Conclusions In conclusion, the obtained thermoreversible, antibacterial, zeolite-based nanoparticles loaded hydrogels represent a multi-targeted combination therapy for diabetic wound healing. Graphical Abstract


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
CBS Lau ◽  
VKM Lau ◽  
CL Liu ◽  
PKK Lai ◽  
JCW Tam ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 634-P
Author(s):  
PIUL S. RABBANI ◽  
JOSHUA A. DAVID ◽  
DARREN L. SULTAN ◽  
ALVARO P. VILLARREAL-PONCE ◽  
JENNIFER KWONG ◽  
...  

Nanomedicine ◽  
2020 ◽  
Vol 15 (23) ◽  
pp. 2241-2253
Author(s):  
Pengju Zhang ◽  
Yuqi Jiang ◽  
Dan Liu ◽  
Yan Liu ◽  
Qinfei Ke ◽  
...  

Aim: To develop an effective strategy for increasing angiogenesis at diabetic wound sites and thereby accelerating wound healing. Materials & methods: A micropatterned nanofibrous scaffold with bioglass nanoparticles encapsulated inside coaxial fibers was prepared by electrospinning. Results: Si ions could be released in a sustained manner from the scaffolds. The hierarchical micro-/nano-structure of the scaffold was found to act as a temporary extracellular matrix to promote endothelial cell adhesion and growth. The scaffold greatly improved angiogenesis and collagen deposition at the wound site, which shortened the healing period of diabetic wounds. Conclusion: This study provides a promising therapeutic option for chronic diabetic wounds with improved angiogenesis.


2019 ◽  
Vol 8 (12) ◽  
pp. 1801210 ◽  
Author(s):  
Maggie J. Malone‐Povolny ◽  
Sara E. Maloney ◽  
Mark H. Schoenfisch

Sign in / Sign up

Export Citation Format

Share Document