Biocompatible poly(galacturonic acid) micro/nanogels with controllable degradation via tunable chemical crosslinking

Author(s):  
Selin S Suner ◽  
Betul Ari ◽  
S. Duygu Sutekin ◽  
Nurettin Sahiner
2019 ◽  
Author(s):  
Ricardo N. dos Santos ◽  
Fábio C. Gozzo ◽  
Faruck Morcos ◽  
Leandro Martinez

1976 ◽  
Vol 41 (10) ◽  
pp. 3119-3130 ◽  
Author(s):  
P. Kováč ◽  
J. Hirsch ◽  
R. Palovčík ◽  
I. Tvaroška ◽  
S. Bystrický
Keyword(s):  

Author(s):  
Alexandra Fatouros ◽  
Ulrike Einhorn-Stoll ◽  
Hanna Kastner ◽  
Stephan Drusch ◽  
Lothar W. Kroh
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1473
Author(s):  
Licelander Hennessey-Ramos ◽  
Walter Murillo-Arango ◽  
Juliana Vasco-Correa ◽  
Isabel Cristina Paz Astudillo

Cocoa pod husks are a waste generated during the processing of cocoa beans. We aimed to explore the enzymatic extraction of pectin using cellulases. The extraction process was optimized using a central composite design (CCD) and analyzed by response surface methodology (RSM). The parameters optimized were feedstock concentration (%), enzyme dosage (µL/g), and time (h). Three dependent variables were studied: pectin yield (g/100 g dry husk) (R2 = 97.02), galacturonic acid content (g/100 g pectin) (R2 = 96.90), and galacturonic acid yield (g/100 g feedstock) (R2 = 95.35). The optimal parameters were 6.0% feedstock concentration, 40 µL g−1 of enzyme, and 18.54 h, conditions that produced experimentally a pectin yield of 10.20 g/100 g feedstock, 52.06 g galacturonic acid/100 g pectin, and a yield 5.31 g galacturonic acid/100 g feedstock. Using the chemical extraction method, a yield of 8.08 g pectin/100 g feedstock and a galacturonic acid content of 60.97 g/100 g pectin were obtained. Using assisted sonication, a pectin yield of 8.28 g/100 g feedstock and a galacturonic acid content of 42.77 g/100 g pectin were obtained. Enzymatically optimized pectin has rheological and physicochemical features typical of this biomaterial, which provides an interesting alternative for the valorization of cocoa husks.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 794 ◽  
Author(s):  
Su Jeong Lee ◽  
Ji Min Seok ◽  
Jun Hee Lee ◽  
Jaejong Lee ◽  
Wan Doo Kim ◽  
...  

Bio-ink properties have been extensively studied for use in the three-dimensional (3D) bio-printing process for tissue engineering applications. In this study, we developed a method to synthesize bio-ink using hyaluronic acid (HA) and sodium alginate (SA) without employing the chemical crosslinking agents of HA to 30% (w/v). Furthermore, we evaluated the properties of the obtained bio-inks to gauge their suitability in bio-printing, primarily focusing on their viscosity, printability, and shrinkage properties. Furthermore, the bio-ink encapsulating the cells (NIH3T3 fibroblast cell line) was characterized using a live/dead assay and WST-1 to assess the biocompatibility. It was inferred from the results that the blended hydrogel was successfully printed for all groups with viscosities of 883 Pa∙s (HA, 0% w/v), 1211 Pa∙s (HA, 10% w/v), and 1525 Pa∙s, (HA, 30% w/v) at a 0.1 s−1 shear rate. Their structures exhibited no significant shrinkage after CaCl2 crosslinking and maintained their integrity during the culture periods. The relative proliferation rate of the encapsulated cells in the HA/SA blended bio-ink was 70% higher than the SA-only bio-ink after the fourth day. These results suggest that the 3D printable HA/SA hydrogel could be used as the bio-ink for tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document