Load Frequency Control of an Interconnected Reheat Thermal system using Type-2 fuzzy system including SMES units

2012 ◽  
Vol 43 (1) ◽  
pp. 1383-1392 ◽  
Author(s):  
K.R. Sudha ◽  
R. Vijaya Santhi
Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2125
Author(s):  
Ali Dokht Shakibjoo ◽  
Mohammad Moradzadeh ◽  
Seyed Zeinolabedin Moussavi ◽  
Lieven Vandevelde

In this paper, an adaptive type-2 fuzzy controller is proposed to control the load frequency of a two-area power system based on descending gradient training and error back-propagation. The dynamics of the system are completely uncertain. The multilayer perceptron (MLP) artificial neural network structure is used to extract Jacobian and estimate the system model, and then, the estimated model is applied to the controller, online. A proportional–derivative (PD) controller is added to the type-2 fuzzy controller, which increases the stability and robustness of the system against disturbances. The adaptation, being real-time and independency of the system parameters are new features of the proposed controller. Carrying out simulations on New England 39-bus power system, the performance of the proposed controller is compared with the conventional PI, PID and internal model control based on PID (IMC-PID) controllers. Simulation results indicate that our proposed controller method outperforms the conventional controllers in terms of transient response and stability.


2020 ◽  
pp. 146-157
Author(s):  
Dr. Anand Gondesi ◽  
Dr. Varaha Narasimha Raja. Ch

Today, in power systems the Load Frequency Control (LFC) problem plays a vital role in an interconnected power system, wherein it maintains the system frequency and tie line flow at their scheduled values during normal period. It is due to frequency of power system, which changes over time with respect to continuous load variation. The present chapter proposes a new methodology to study the Load Frequency Control (LFC) problem of a three area inter-connected system using R Fuzzy system (FS) approach. Moreover, this technique is applied to control the systems which include three areas considering a non-linearity Generation Rate constraint (GRC) having two steam turbines and one hydro-turbine tied together. The main advantage of this controller is its high insensitivity to large load changes and plant parameter variations even in the presence of non-linearity. Furthermore, it is tested on a three-area power system to illustrate its robust performance. The results obtained by using Rule Based Fuzzy PID controller explicitly show that the performance of this proposed controller is superior to conventional controller in terms of several parameters like overshoot, settling time and robustness.


Author(s):  
Sambugari Anil Kumar ◽  
M. Siva Sathya Narayana ◽  
K. Jithendra Gowd

This paper emphasizes the significance of PID controller parameters using a slime mould algorithm (SMA) to reduce load frequency control (LFC) issues in a thermal system in an open market scenario. The SMA is used to solve the parameterization of the PID controller, which was formulated as an optimization problem.The performance of the PID controller parameters improves the dynamic characteristics of the system as frequency in each area, and also deviations in  tie line power after sudden load violation. In order to study the efficiency of the proposed method, the system was tested with different power transactions for a small load disturbance and the comparative results were presented. The optimal value of the controller parameters derived from SMA based PID controller is estimated using a finite nonlinear optimization using a performance index based method.


Sign in / Sign up

Export Citation Format

Share Document