Swarm intelligence based algorithms for reactive power planning with Flexible AC transmission system devices

Author(s):  
Biplab Bhattacharyya ◽  
Saurav Raj
2020 ◽  
Vol 53 (1-2) ◽  
pp. 239-249 ◽  
Author(s):  
Pradeep Panthagani ◽  
R Srinivasa Rao

Optimal reactive power dispatch is one of the key factors to attain cost-effective and stable functioning of power system. It is a complicated non-linear optimization issue with a combination of discrete and continuous control variables. Due to this complex feature of optimal reactive power dispatch, optimization technique has become an efficient method to solve this problem. In this work, Kinetic Gas Molecule Optimization algorithm with Pareto optimality is proposed for solving multi-objective optimal reactive power dispatch problem. The presentation of Kinetic Gas Molecule Optimization is improved by computing inertia weight and acceleration coefficients dynamically rather than a fixed value. Because of this reason, the searching capability of the particles in each iteration is improved. However, to improve the power system performance in optimal reactive power dispatch scenario, additional flexible AC transmission system devices like static VAR compensator, thyristor-controlled series compensator, and unified power flow controller are introduced to provide stable results when compared to conventional output because flexible AC transmission system devices are capable of controlling the flow of real power and reactive power. These details are implemented and tested on IEEE 30-bus test system with various objectives. The performance of proposed method is validated from MATLAB, which shows the value of power loss as 4.3583 and voltage deviation as 0.26499 with cost of US$469.6417 per MVAR, which shows considerably superior results when compared with implemented particle swarm optimization results. The proposed method provides an efficient result for solving multi-objective optimal reactive power dispatch issues.


2013 ◽  
Vol 457-458 ◽  
pp. 1371-1376
Author(s):  
Xin Hua Xiong ◽  
Zun Nan Min ◽  
Ting Jian Zhong

UPFC is one of the flexible ac transmission system (FACTS) compensation devices, it has a comprehensive compensation function, UPFC has the characteristic functions as follows: fast anddynamical adjusting the parameters of electricity transmission system, such as voltage, impedance, phase angle, active power and reactive power, expanding thecapacity of electricity transmission, improving the stability of power system and optimizing the operation of power system.So it is a perfect fashion for active and reactive power controller, and also it has the function of regulating voltage.


2014 ◽  
Vol 3 (3) ◽  
pp. 73-95 ◽  
Author(s):  
Marwa Shahin ◽  
Ebtisam Saied ◽  
M.A. Moustafa Hassan ◽  
Fahmy Bendary

The main subject of these paper deals with enhancing the steady-state and dynamics performance of the power grids by using new idea namely Advanced Flexible AC Transmission Systems based on Evolutionary Computing Methods. Control of the electric power system can be achieved by using the new trends as Particle Swarm Optimization applied to this subject to enhance the characteristics of controller performance. This paper studies and analyzes Advanced Flexible AC Transmission System to mitigate only one of power quality problems is voltage swell. The Advanced Flexible AC Transmission System, which will be used in this paper, is the most promising one, which known as Advanced Thyristor Controlled Series Reactors, and Advanced Static VAR Compensator were utilized in this research to mitigate the voltage swell aiming to reach. This paper focuses on the operation of the AFACTS device under turning off heavy load that may causes transformer damaged, as no research covers this problem by this technique. Particle Swarm Optimization is used to determine the value of series inductor connected to the Advanced Flexible AC Transmission System. The proposed algorithm formatting, deriving, coding and programming the network equations required to link AFACTS during steady-state and dynamic behaviors to the power systems tested on the IEEE 30 bus system as well as IEEE 14 bus system, and 9 bus system.


Sign in / Sign up

Export Citation Format

Share Document