Stochastic multi-carrier energy management in the smart islands using reinforcement learning and unscented transform

Author(s):  
Hongbo Zou ◽  
Juan Tao ◽  
Salah K. Elsayed ◽  
Ehab E. Elattar ◽  
Abdulaziz Almalaq ◽  
...  
Author(s):  
Yujian Ye ◽  
Dawei Qiu ◽  
Jonathan Ward ◽  
Marcin Abram

The problem of real-time autonomous energy management is an application area that is receiving unprecedented attention from consumers, governments, academia, and industry. This paper showcases the first application of deep reinforcement learning (DRL) to real-time autonomous energy management for a multi-carrier energy system. The proposed approach is tailored to align with the nature of the energy management problem by posing it in multi-dimensional continuous state and action spaces, in order to coordinate power flows between different energy devices, and to adequately capture the synergistic effect of couplings between different energy carriers. This fundamental contribution is a significant step forward from earlier approaches that only sought to control the power output of a single device and neglected the demand-supply coupling of different energy carriers. Case studies on a real-world scenario demonstrate that the proposed method significantly outperforms existing DRL methods as well as model-based control approaches in achieving the lowest energy cost and yielding a representation of energy management policies that adapt to system uncertainties.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2700
Author(s):  
Grace Muriithi ◽  
Sunetra Chowdhury

In the near future, microgrids will become more prevalent as they play a critical role in integrating distributed renewable energy resources into the main grid. Nevertheless, renewable energy sources, such as solar and wind energy can be extremely volatile as they are weather dependent. These resources coupled with demand can lead to random variations on both the generation and load sides, thus complicating optimal energy management. In this article, a reinforcement learning approach has been proposed to deal with this non-stationary scenario, in which the energy management system (EMS) is modelled as a Markov decision process (MDP). A novel modification of the control problem has been presented that improves the use of energy stored in the battery such that the dynamic demand is not subjected to future high grid tariffs. A comprehensive reward function has also been developed which decreases infeasible action explorations thus improving the performance of the data-driven technique. A Q-learning algorithm is then proposed to minimize the operational cost of the microgrid under unknown future information. To assess the performance of the proposed EMS, a comparison study between a trading EMS model and a non-trading case is performed using a typical commercial load curve and PV profile over a 24-h horizon. Numerical simulation results indicate that the agent learns to select an optimized energy schedule that minimizes energy cost (cost of power purchased from the utility and battery wear cost) in all the studied cases. However, comparing the non-trading EMS to the trading EMS model operational costs, the latter one was found to decrease costs by 4.033% in summer season and 2.199% in winter season.


Sign in / Sign up

Export Citation Format

Share Document