A thermo-mechanical fatigue damage model for variable temperature and loading amplitude conditions

2007 ◽  
Vol 29 (9-11) ◽  
pp. 1797-1802 ◽  
Author(s):  
H KANG ◽  
Y LEE ◽  
J CHEN ◽  
D FAN
PAMM ◽  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Nicola Magino ◽  
Jonathan Köbler ◽  
Heiko Andrä ◽  
Matti Schneider ◽  
Fabian Welschinger

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2250
Author(s):  
Mohammad Amjadi ◽  
Ali Fatemi

Short glass fiber-reinforced (SGFR) thermoplastics are used in many industries manufactured by injection molding which is the most common technique for polymeric parts production. Glass fibers are commonly used as the reinforced material with thermoplastics and injection molding. In this paper, a critical plane-based fatigue damage model is proposed for tension–tension or tension–compression fatigue life prediction of SGFR thermoplastics considering fiber orientation and mean stress effects. Temperature and frequency effects were also included by applying the proposed damage model into a general fatigue model. Model predictions are presented and discussed by comparing with the experimental data from the literature.


2006 ◽  
Vol 514-516 ◽  
pp. 804-809
Author(s):  
S. Gao ◽  
Ewald Werner

The forging die material, a high strength steel designated W513 is considered in this paper. A fatigue damage model, based on thermodynamics and continuum damage mechanics, is constructed in which both the previous damage and the loading sequence are considered. The unknown material parameters in the model are identified from low cycle fatigue tests. Damage evolution under multi-level fatigue loading is investigated. The results show that the fatigue life is closely related to the loading sequence. The fatigue life of the materials with low fatigue loading first followed by high fatigue loading is longer than that for the reversed loading sequence.


2019 ◽  
Vol 165 ◽  
pp. 336-345 ◽  
Author(s):  
Runguang Li ◽  
Yan-Dong Wang ◽  
Wenjun Liu ◽  
Chang Geng ◽  
Qingge Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document