A nonlinear grain-based fatigue damage model for civil infrastructure under variable amplitude loads

2017 ◽  
Vol 104 ◽  
pp. 389-396 ◽  
Author(s):  
Hao Yuan ◽  
Wei Zhang ◽  
Jeongho Kim ◽  
Yongming Liu
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Lu Zhang ◽  
Jie Jin ◽  
Wei Zhou ◽  
Wen-Liang Li ◽  
Meng Qiao

It is rather difficult for engineers to apply many of the fatigue damage models for requiring a knee point, material-dependent coefficient, or extensive testing, and some of them are only validated by a fatigue test of two-stage loading rather than higher-stage loading. In this paper, we propose a new model of fatigue cumulative damage in variable amplitude loading, which just requires the information of the S-N curve determined from the fatigue experiment. Specifically, the proposed model defines a stress equivalent transformation way to translate the damage of one stress to another stress through simple calculation. Experimental data of fatigue including two-, three-, and four-block loading verify the superiority of the proposed model by comparing it with the Miner model and Manson model. The results show that the proposed model can be generalized to any type of loading and presents a better prediction. Therefore, the advantage of the proposed model can be easily used by an engineer.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hongsong Li ◽  
Yongbao Liu ◽  
Xing He ◽  
Wangtian Yin

The failure of many aircraft structures and materials is caused by the accumulation of fatigue damage under variable-amplitude cyclic loading wherein the damage evolution of materials is complicated. Therefore, to study the cumulative fatigue damage of materials under variable-amplitude cyclic loading, a new nonlinear fatigue damage accumulation model is proposed based on the ecological quality dissipation of materials by considering the effects of load interaction and sequence. The proposed new model is validated by the test data obtained for three kinds of material under multilevel fatigue loading. Compared with the Miner model and Kwofie model, the proposed model can more effectively analyse the accumulative damage and predict fatigue life of different materials under variable-amplitude cyclic loading than others. The study provides a basis for predicting fatigue life accurately and determining reasonable maintenance periods of aircraft structures.


PAMM ◽  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Nicola Magino ◽  
Jonathan Köbler ◽  
Heiko Andrä ◽  
Matti Schneider ◽  
Fabian Welschinger

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2250
Author(s):  
Mohammad Amjadi ◽  
Ali Fatemi

Short glass fiber-reinforced (SGFR) thermoplastics are used in many industries manufactured by injection molding which is the most common technique for polymeric parts production. Glass fibers are commonly used as the reinforced material with thermoplastics and injection molding. In this paper, a critical plane-based fatigue damage model is proposed for tension–tension or tension–compression fatigue life prediction of SGFR thermoplastics considering fiber orientation and mean stress effects. Temperature and frequency effects were also included by applying the proposed damage model into a general fatigue model. Model predictions are presented and discussed by comparing with the experimental data from the literature.


2006 ◽  
Vol 514-516 ◽  
pp. 804-809
Author(s):  
S. Gao ◽  
Ewald Werner

The forging die material, a high strength steel designated W513 is considered in this paper. A fatigue damage model, based on thermodynamics and continuum damage mechanics, is constructed in which both the previous damage and the loading sequence are considered. The unknown material parameters in the model are identified from low cycle fatigue tests. Damage evolution under multi-level fatigue loading is investigated. The results show that the fatigue life is closely related to the loading sequence. The fatigue life of the materials with low fatigue loading first followed by high fatigue loading is longer than that for the reversed loading sequence.


Sign in / Sign up

Export Citation Format

Share Document