Fatigue damage in fieldshapers used during electromagnetic forming and welding processes at high frequency impulse current

2018 ◽  
Vol 109 ◽  
pp. 93-102 ◽  
Author(s):  
B. Saadouki ◽  
T. Sapanathan ◽  
P.H. Pelca ◽  
M. Elghorba ◽  
M. Rachik
2013 ◽  
Vol 694-697 ◽  
pp. 278-283
Author(s):  
Zhi Qiang Xu

A crucial step to obtain a reliable fatigue life prediction is to determine a proper small load threshold below which the cycles at small loads or stresses with high frequency causing little fatigue damage are truncated from the original load time history. By taking both the peak over threshold theory and the endurance limit threshold into account, a proper small load threshold is proposed in this paper. The optimal threshold should be high enough to remove the high-frequency small cycles and low enough to minimize the loss of the fatigue damage which maybe be truncated by the empirical small-load omitting threshold. Based on this proper threshold, the fatigue life prediction will be more reliable.


2013 ◽  
Vol 823 ◽  
pp. 417-421 ◽  
Author(s):  
Feng Yun Huang ◽  
Huan Huan Sun ◽  
Hao Pan ◽  
Wei Ru Zhang

For the multi-time scale characteristics of vibration signal, a composite multi-frequency dictionary combining the low-frequency Fourier dictionary and the high-frequency impulse time-frequency dictionary is constituted, to decompose multi-component vibration signal into the combination of several one-component signals. The use of empirical model decomposition (EDM) in high-frequency impulse Component signal including feature information is to realize segmented Hilbert-Huang transform of signal and to acquire the time-frequency representation of every one-component signal, which is the process of fault information extraction of vibration signal. The application of the method in main reducer fault diagnosis verifies the engineering practicability and validity of the new algorithm.


2017 ◽  
Vol 27 (1-2) ◽  
pp. 50-58 ◽  
Author(s):  
Wolfgang Tillmann ◽  
Frank Walther ◽  
Weifeng Luo ◽  
Matthias Haack ◽  
Jens Nellesen ◽  
...  

Author(s):  
Huilong Ren ◽  
Kaihong Zhang ◽  
Hui Li ◽  
Di Wang

As the sea transport demand increases constantly, marine corporations around the world are pursuing solutions with large scale and low cost, which makes ultra large containerships’ construction consequentially. Ultra large containerships are more flexible relatively, and the 2-node natural frequency can easily fall into the encountered spectrum frequency range of normal sea state. Meanwhile, as the speed of containerships is high and its large bow flare, when sailing with high speed, the bow structures may suffer severe slamming forces which can increase the design wave loads’ level and the fatigue damage. The importance of hydroelastic analysis of large and flexible containerships of today has been pointed out for structure design. Rules of Many Classification Society have made changes on design wave loads’ value and fatigue influence factor modification. The paper firstly introduced 3-D linear hydroelasticity theory to calculate the Response Amplitude Operator (RAO) in frequency domain, and then described 3-D nonlinear hydroelasticity theory to obtain the nonlinear wave loads time history in irregular waves in time domain, considering large amplitude motion and slamming force due to severe relative motion between ship hull and wave. Based on the theories, computer programs are made to conduct the calculations under specified load case, and some calculation and statistical results are compared with experimental results to verify the accuracy and stability of the programs secondly. The paper focused on the influence of springing and whipping on fatigue damages of 8500TEU and 10000TEU containerships in different loading cases, using spectrum analysis method and time domain statistical analysis method. The spectrum analysis method can calculate fatigue damage due to low-frequency wave loads and high-frequency springing separately, while the time domain statistical analysis can calculate fatigue damage due to the high-frequency damping whipping additionally, based on 3-D time domain nonlinear hydroelasticity wave loads’ time series simulation in irregular waves and rain flow counting method. Finally, discussions on influence factor of springing and whipping with different loading cases are made. Based on these two containerships in example, the fatigue damage due to whipping can be the same as the fatigue damage due to springing and even sometimes can be larger than the springing damage. According to the wave loads influence factor, the fatigue assessment of different position on midship section is done on the basis of nominal stress. Besides, some suggestions on calculating load case selection are made to minimize the quantity of work in frequency and time domain. Thus the tools for fatigue influence factor modification are provided to meet the demand of IACS’ UR[1].


2018 ◽  
Vol 482 (2) ◽  
pp. 1320-1323
Author(s):  
A. V. Nikolaev ◽  
D. S. Gorkin ◽  
L. V. Eppelbaum ◽  
N. Arnon ◽  
P. G. Manukov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document