P92 steel creep-fatigue interaction responses under hybrid stress-strain controlled loading and a life prediction model

2020 ◽  
Vol 140 ◽  
pp. 105837
Author(s):  
Tianyu Zhang ◽  
Xiaowei Wang ◽  
Yunnan Ji ◽  
Wei Zhang ◽  
Tasnim Hassan ◽  
...  
2013 ◽  
Vol 860-863 ◽  
pp. 972-977 ◽  
Author(s):  
De Xian Wang ◽  
Dong Mei Ji ◽  
Jian Xing Ren

Taking the P92 steel as the object,Creep-Fatigue (CF) tests of P92 steel at 873K under stress-controlled were carried out with GWT2504 equipment to investigate the CF life prediction. The life prediction model based on Applied Mechanical Work Density (AMWD) was developed in this study,and introduce the effective coefficient ƞ to modify the former. To verify the prediction capability of the AMWD-based and the modified model, comparisons of the models predicted lives with the experimental data of CF tests on P92 steel at 873K were made, it is found out that the AMWD-based model predictions for CF are in agreement with the experimental lives with the factors of 0.9013 and 1.0600, which verifies the model has a good predictability, and the Modified model with the factors of 0.9558 and 1.0469.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Junzhou Huo ◽  
Debin Sun ◽  
Shaoxia An

Abstract A creep-fatigue life prediction model based on a novel creep damage evaluation method (NCDEM) considering the multi-factor coupling effect is presented in this paper. Further, to verify the validity and practicability, the creep-fatigue life of GH4169 at 650 °C is calculated to compare with the experimental results. Ultimately, the prediction results are respectively compared with those of the creep-fatigue life prediction models based on the time fraction method (TFM), ductility exhaustion method (DEM), and strain energy density exhaustion method (SEDEM). Consequently, the prediction results are distributed in ±1.5 times dispersion band, which elucidates the creep-fatigue life prediction model proposed based on the NCDEM has the best ability.


2007 ◽  
Vol 460-461 ◽  
pp. 195-203 ◽  
Author(s):  
Chang Yeol Jeong ◽  
Jung-Chan Bae ◽  
Chang-Seog Kang ◽  
Jae-Ik Cho ◽  
Hyeon-Taek Son

Sign in / Sign up

Export Citation Format

Share Document