Analysis on stress‐strain behavior and life prediction of P92 steel under creep‐fatigue interaction conditions

2020 ◽  
Vol 43 (11) ◽  
pp. 2731-2743
Author(s):  
Lei Zhao ◽  
Lianyong Xu ◽  
Yongdian Han ◽  
Hongyang Jing
2020 ◽  
Vol 140 ◽  
pp. 105837
Author(s):  
Tianyu Zhang ◽  
Xiaowei Wang ◽  
Yunnan Ji ◽  
Wei Zhang ◽  
Tasnim Hassan ◽  
...  

2013 ◽  
Vol 860-863 ◽  
pp. 972-977 ◽  
Author(s):  
De Xian Wang ◽  
Dong Mei Ji ◽  
Jian Xing Ren

Taking the P92 steel as the object,Creep-Fatigue (CF) tests of P92 steel at 873K under stress-controlled were carried out with GWT2504 equipment to investigate the CF life prediction. The life prediction model based on Applied Mechanical Work Density (AMWD) was developed in this study,and introduce the effective coefficient ƞ to modify the former. To verify the prediction capability of the AMWD-based and the modified model, comparisons of the models predicted lives with the experimental data of CF tests on P92 steel at 873K were made, it is found out that the AMWD-based model predictions for CF are in agreement with the experimental lives with the factors of 0.9013 and 1.0600, which verifies the model has a good predictability, and the Modified model with the factors of 0.9558 and 1.0469.


1992 ◽  
Vol 114 (2) ◽  
pp. 135-144 ◽  
Author(s):  
Yi-Hsin Pao ◽  
Scott Badgley ◽  
Ratan Govila ◽  
Linda Baumgartner ◽  
Richard Allor ◽  
...  

Failures in electronic packages under thermal fatigue usually result from cracking in solder joints due to creep/fatigue crack growth. Understanding the stress/strain behavior of such solder joints is the first step in characterizing their fracture behavior. A specimen has been developed to determine the stress/strain hysteresis response of 90Pb/10Sn solder joints under cyclic thermal loadings. Simple and special techniques have been developed to fabricate solder joints with relatively high melting points, such as 90Pb/10Sn. Four high-temperature strain gages are mounted on the specimen to measure mechanical strains which provide the basis for determining the shear stress and strain in the solder. A special Wheatstone bridge has been designed to improve the specimen sensitivity, e.g., 20 με/MPa in the test. Shear stresses in the solder as low as 0.5 MPa can be resolved accurately. The specimen was subjected to thermal cycling between 40°C to 140°C, with 10°C/min ramp rate and 10 minute hold times, in a thermal chamber developed in-house. Excellent experimental results have been obtained for 90Pb/10Sn solder joints in that detailed characteristics of stress relaxation and strain creep as a function of temperature were captured. The specimen developed is not only suitable for use in studying the constitutive response of soft solder alloys and other joining materials, such as adhesives, but can serve as a thermal fatigue specimen to study the fracture behavior.


1988 ◽  
Vol 110 (3) ◽  
pp. 301-307 ◽  
Author(s):  
S. Yamamoto ◽  
K. Isobe ◽  
S. Ohte ◽  
N. Tanaka ◽  
S. Ozaki ◽  
...  

Fatigue and creep-fatigue tests at elevated temperature were conducted on two different-sized bellows, φ 1100 mm and φ 300 mm in nominal inner diameter, to investigate the fatigue life and the creep-fatigue interaction in a bellows, and also to provide test data for developing a life prediction method and design-by-analysis rules for bellows in elevated temperature service. A series of tests consisted of strain behavior and fatigue tests at room temperature, and fatigue and creep-fatigue tests at elevated temperature. Also, inelastic finite element analyses were performed on a bellows under internal pressure and cyclic axial deflections. Analytical results were compared with the measured data obtained in the room temperature testing to verify the strain prediction method.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 183 ◽  
Author(s):  
Xiaowei Wang ◽  
Wei Zhang ◽  
Tianyu Zhang ◽  
Jianming Gong ◽  
Magd Abdel Wahab

Low cycle fatigue (LCF) and creep fatigue interaction (CFI) loadings are the main factors resulting in the failure of many critical components in the infrastructure of power plants and aeronautics. Accurate prediction of life spans under specified loading conditions is significant for the design and maintenance of components. In the present study, various LCF and CFI tests are conducted to investigate the effects of temperature, strain amplitude, hold time and hold direction on the fatigue life of P92 steel. To predict fatigue life under different experimental conditions, various conventional life prediction models are evaluated and discussed. Moreover, a new empirical life prediction model is proposed based on the conventional Manson-Coffin-Basquin (MCB) model. The newly proposed model is able to simultaneously consider the effects of temperature, strain amplitude, hold time and hold direction on predicted life. The main advantage is that only the known input experimental parameters are required to perform the prediction. In addition to the validation made through the experimental data of P92 steel conducted in the present paper, the model is also verified through numerous experimental data reported in the literature for various 9–12% Cr steels.


Sign in / Sign up

Export Citation Format

Share Document