Joint impedance and facies inversion of time-lapse seismic data for improving monitoring of CO2 incidentally stored from CO2 EOR

2021 ◽  
Vol 112 ◽  
pp. 103501
Author(s):  
César Barajas-Olalde ◽  
Alan Mur ◽  
Donald C. Adams ◽  
Lu Jin ◽  
Jun He ◽  
...  
Keyword(s):  
2021 ◽  
Author(s):  
Cesar Barajas-Olalde ◽  
Alan Mur ◽  
Donald C. Adams ◽  
Lu Jin ◽  
Jun He ◽  
...  
Keyword(s):  

2019 ◽  
Author(s):  
Haofan Wang ◽  
Jinfeng Ma ◽  
Lin Li ◽  
Yang Yang ◽  
Zhe Wang ◽  
...  
Keyword(s):  

2015 ◽  
Author(s):  
O. Leeuwenburgh ◽  
S. Meekes ◽  
C. Hofstee ◽  
A. G. Chitu

Geophysics ◽  
2015 ◽  
Vol 80 (2) ◽  
pp. WA61-WA67 ◽  
Author(s):  
Zhaoyun Zong ◽  
Xingyao Yin ◽  
Guochen Wu ◽  
Zhiping Wu

Elastic inverse-scattering theory has been extended for fluid discrimination using the time-lapse seismic data. The fluid factor, shear modulus, and density are used to parameterize the reference medium and the monitoring medium, and the fluid factor works as the hydrocarbon indicator. The baseline medium is, in the conception of elastic scattering theory, the reference medium, and the monitoring medium is corresponding to the perturbed medium. The difference in the earth properties between the monitoring medium and the baseline medium is taken as the variation in the properties between the reference medium and perturbed medium. The baseline and monitoring data correspond to the background wavefields and measured full fields, respectively. And the variation between the baseline data and monitoring data is taken as the scattered wavefields. Under the above hypothesis, we derived a linearized and qualitative approximation of the reflectivity variation in terms of the changes of fluid factor, shear modulus, and density with the perturbation theory. Incorporating the effect of the wavelet into the reflectivity approximation as the forward solver, we determined a practical prestack inversion approach in a Bayesian scheme to estimate the fluid factor, shear modulus, and density changes directly with the time-lapse seismic data. We evaluated the examples revealing that the proposed approach rendered the estimation of the fluid factor, shear modulus, and density changes stably, even with moderate noise.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. C81-C92 ◽  
Author(s):  
Helene Hafslund Veire ◽  
Hilde Grude Borgos ◽  
Martin Landrø

Effects of pressure and fluid saturation can have the same degree of impact on seismic amplitudes and differential traveltimes in the reservoir interval; thus, they are often inseparable by analysis of a single stacked seismic data set. In such cases, time-lapse AVO analysis offers an opportunity to discriminate between the two effects. We quantify the uncertainty in estimations to utilize information about pressure- and saturation-related changes in reservoir modeling and simulation. One way of analyzing uncertainties is to formulate the problem in a Bayesian framework. Here, the solution of the problem will be represented by a probability density function (PDF), providing estimations of uncertainties as well as direct estimations of the properties. A stochastic model for estimation of pressure and saturation changes from time-lapse seismic AVO data is investigated within a Bayesian framework. Well-known rock physical relationships are used to set up a prior stochastic model. PP reflection coefficient differences are used to establish a likelihood model for linking reservoir variables and time-lapse seismic data. The methodology incorporates correlation between different variables of the model as well as spatial dependencies for each of the variables. In addition, information about possible bottlenecks causing large uncertainties in the estimations can be identified through sensitivity analysis of the system. The method has been tested on 1D synthetic data and on field time-lapse seismic AVO data from the Gullfaks Field in the North Sea.


2021 ◽  
Author(s):  
Rick Schrynemeeckers

Abstract Current offshore hydrocarbon detection methods employ vessels to collect cores along transects over structures defined by seismic imaging which are then analyzed by standard geochemical methods. Due to the cost of core collection, the sample density over these structures is often insufficient to map hydrocarbon accumulation boundaries. Traditional offshore geochemical methods cannot define reservoir sweet spots (i.e. areas of enhanced porosity, pressure, or net pay thickness) or measure light oil or gas condensate in the C7 – C15 carbon range. Thus, conventional geochemical methods are limited in their ability to help optimize offshore field development production. The capability to attach ultrasensitive geochemical modules to Ocean Bottom Seismic (OBS) nodes provides a new capability to the industry which allows these modules to be deployed in very dense grid patterns that provide extensive coverage both on structure and off structure. Thus, both high resolution seismic data and high-resolution hydrocarbon data can be captured simultaneously. Field trials were performed in offshore Ghana. The trial was not intended to duplicate normal field operations, but rather provide a pilot study to assess the viability of passive hydrocarbon modules to function properly in real world conditions in deep waters at elevated pressures. Water depth for the pilot survey ranged from 1500 – 1700 meters. Positive thermogenic signatures were detected in the Gabon samples. A baseline (i.e. non-thermogenic) signature was also detected. The results indicated the positive signatures were thermogenic and could easily be differentiated from baseline or non-thermogenic signatures. The ability to deploy geochemical modules with OBS nodes for reoccurring surveys in repetitive locations provides the ability to map the movement of hydrocarbons over time as well as discern depletion affects (i.e. time lapse geochemistry). The combined technologies will also be able to: Identify compartmentalization, maximize production and profitability by mapping reservoir sweet spots (i.e. areas of higher porosity, pressure, & hydrocarbon richness), rank prospects, reduce risk by identifying poor prospectivity areas, accurately map hydrocarbon charge in pre-salt sequences, augment seismic data in highly thrusted and faulted areas.


2018 ◽  
Vol 16 (6) ◽  
pp. 613-625 ◽  
Author(s):  
M. Dangeard ◽  
L. Bodet ◽  
S. Pasquet ◽  
J. Thiesson ◽  
R. Guérin ◽  
...  
Keyword(s):  

2019 ◽  
Author(s):  
Cesar Barajas-Olalde ◽  
Donald Adams ◽  
Lu Jin ◽  
Jun He ◽  
Nicholas Kalenze ◽  
...  

Author(s):  
A. Ogbamikhumi ◽  
T. Tralagba ◽  
E. E. Osagiede

Field ‘K’ is a mature field in the coastal swamp onshore Niger delta, which has been producing since 1960. As a huge producing field with some potential for further sustainable production, field monitoring is therefore important in the identification of areas of unproduced hydrocarbon. This can be achieved by comparing production data with the corresponding changes in acoustic impedance observed in the maps generated from base survey (initial 3D seismic) and monitor seismic survey (4D seismic) across the field. This will enable the 4D seismic data set to be used for mapping reservoir details such as advancing water front and un-swept zones. The availability of good quality onshore time-lapse seismic data for Field ‘K’ acquired in 1987 and 2002 provided the opportunity to evaluate the effect of changes in reservoir fluid saturations on time-lapse amplitudes. Rock physics modelling and fluid substitution studies on well logs were carried out, and acoustic impedance change in the reservoir was estimated to be in the range of 0.25% to about 8%. Changes in reservoir fluid saturations were confirmed with time-lapse amplitudes within the crest area of the reservoir structure where reservoir porosity is 0.25%. In this paper, we demonstrated the use of repeat Seismic to delineate swept zones and areas hit with water override in a producing onshore reservoir.


Sign in / Sign up

Export Citation Format

Share Document