Numerical study of flow and heat transfer during a high-speed micro-drop impact on thin liquid films

2021 ◽  
Vol 89 ◽  
pp. 108808
Author(s):  
Swati Singh ◽  
Arun K. Saha
Author(s):  
Zezhi Zeng ◽  
Gopinath Warrier ◽  
Y. Sungtaek Ju

Direct-contact heat transfer between a falling liquid film and a gas stream yield high heat transfer rates and as such it is routinely used in several industrial applications. This concept has been incorporated by us into the proposed design of a novel heat exchanger for indirect cooling of steam in power plants. The DILSHE (Direct-contact Liquid-on-String Heat Exchangers) module consists of an array of small diameter (∼ 1 mm) vertical strings with hot liquid coolant flowing down them due to gravity. A low- or near-zero vapor pressure liquid coolant is essential to minimize/eliminate coolant loss. Consequently, liquids such as Ionic Liquids and Silicone oils are ideal candidates for the coolant. The liquid film thickness is of the order of 1 mm. Gas (ambient air) flowing upwards cools the hot liquid coolant. Onset of fluid instabilities (Rayleigh-Plateau and/or Kapitza instabilities) result in the formation of a liquid beads, which enhance heat transfer due to additional mixing. The key to successfully designing and operating DILSHE is understanding the fundamentals of the liquid film fluid dynamics and heat transfer and developing an operational performance map. As a first step towards achieving these goals, we have undertaken a parametric experimental and numerical study to investigate the fluid dynamics of thin liquid films flowing down small diameter strings. Silicone oil and air are the working fluids in the experiments. The experiments were performed with a single nylon sting (fishing line) of diameter = 0.61 mm and height = 1.6 m. The inlet temperature of both liquid and air were constant (∼ 20 °C). In the present set of experiments the variables that were parametrically varied were: (i) liquid mass flow rate (0.05 to 0.23 g/s) and (ii) average air velocity (0 to 2.7 m/s). Visualization of the liquid flow was performed using a high-speed camera. Parameters such as base liquid film thickness, liquid bead shape and size, velocity (and hence frequency) of beads were measured from the high-speed video recordings. The effect of gas velocity on the dynamics of the liquid beads was compared to data available in the open literature. Within the range of gas velocities used in the experiments, the occurrence of liquid hold up and/or liquid blow over, if any, were also identified. Numerical simulations of the two-phase flow are currently being performed. The experimental results will be invaluable in validation/refinement of the numerical simulations and development of the operational map.


2017 ◽  
Vol 29 (8) ◽  
pp. 082108 ◽  
Author(s):  
Yisen Guo ◽  
Yongsheng Lian

Author(s):  
Karsten Lo¨ffler ◽  
Hongyi Yu ◽  
Tatiana Gambaryan-Roisman ◽  
Peter Stephan

Thin liquid films flowing along solid walls are widely used in technological applications in which high rates of heat and mass transport are required. The transport processes can be further intensified by using structured walls. In the present work hydrodynamics and heat transfer in falling liquid films on heated vertical and inclined walls with mini-grooves are studied experimentally and theoretically/numerically. The experiments are performed with straight, meandering and zigzag mini-grooves. The film dynamics is investigated using a confocal chromatic sensoring (CHR) technique. The flow patterns and the temperature of the liquid-gas interface are visualized using the high-speed infrared thermography. The wall temperature distribution is measured with thermocouples. A numerical model for description of the velocity and temperature fields in the thermal entrance region of the falling films on smooth and structured walls is developed. This model is based on the solution of the Graetz-Nusselt problem for falling films on grooved plates. We show that the mini-grooves significantly affect the flow patterns, film stability and heat transfer in falling liquid films. Using grooved walls leads to the increase of the maximal attainable heat transfer rate.


2015 ◽  
Vol 9 (3) ◽  
pp. 242 ◽  
Author(s):  
Efstathios Kaloudis ◽  
Dimitris Siachos ◽  
Konstantinos Stefanos Nikas

Author(s):  
Hongyi Yu ◽  
Karsten Loffler ◽  
Tatiana Gambaryan-Roisman ◽  
Peter Stephan

Sign in / Sign up

Export Citation Format

Share Document