A numerical study of pulverized coal ignition by means of plasma torches in air–coal dust mixture ducts of utility boiler furnaces

2008 ◽  
Vol 51 (7-8) ◽  
pp. 1970-1978 ◽  
Author(s):  
Srdjan Belosevic ◽  
Miroslav Sijercic ◽  
Predrag Stefanovic
2005 ◽  
Vol 9 (2) ◽  
pp. 57-72 ◽  
Author(s):  
Miroslav Sijercic ◽  
Srdjan Belosevic ◽  
Predrag Stefanovic

Application of plasma-system for pulverized coal ignition and combustion stabilization in utility boiler furnaces promises to achieve certain savings compared to the use of heavy oil burners. Plasma torches are built in air-coal dust mixture ducts between coal mills and burners. Characteristics of processes in the ducts with plasma-system for pulverized coal combustion stabilization are analyzed in the paper, with respect to the modeling and numerical simulation of mass, momentum and heat transfer in two-phase turbulent gas-particle flow. The simulations have been performed for three different geometries of the air-coal dust mixture ducts with plasma torches, for TENTAI utility boiler and pulverized lignite Kolubara-Field "D". Selected results of numerical simulation of processes are presented. The plasma-system thermal effect is discussed regarding corresponding savings of liquid fuel. The results of numerical simulations have been analyzed with respect to the processes in the duct and especially with respect to the influence of the duct shape to a temperature field at the outlet cross section, as a basis for the duct geometry optimization. It has been emphasized that numerical simulation of processes can be applied in analysis and optimization of pulverized coal ignition and combustion stabilization and enables efficient and cost-effective scaling-up procedure from laboratory to industrial level.


2016 ◽  
Vol 94 ◽  
pp. 657-669 ◽  
Author(s):  
Srdjan Belošević ◽  
Ivan Tomanović ◽  
Nenad Crnomarković ◽  
Aleksandar Milićević ◽  
Dragan Tucaković

Energy ◽  
2017 ◽  
Vol 119 ◽  
pp. 392-399 ◽  
Author(s):  
Peng Tan ◽  
Lun Ma ◽  
Ji Xia ◽  
Qingyan Fang ◽  
Cheng Zhang ◽  
...  

Author(s):  
Yu Wang ◽  
Qi He ◽  
Ming Liu ◽  
Weixiong Chen ◽  
Junjie Yan

In pulverized coal-fired plant, the U-type bend is commonly used in flue gas and pulverized coal pipe system to due to the constraints of outer space. And gas-solid two-phase flow exists in these pipelines. The erosion of the pipe has significant effect on the safety and reliability of pipelines. In present paper, the erosion characteristics of U-type bend were investigated through CFD (Computational Fluid Dynamics) method. The wear distribution on the pipe wall was obtained. And the particle flow characteristics in U-type bend were analyzed. The influence of inlet velocity, mass loading rate and particle size on the erosion rate was studied as well. Result suggested that the maximum erosion rate increases exponentially with the increase of inlet velocity. And maximum erosion rate increases linearly with the increasing mass loading rate. Increasing particle size can aggravate the wear on the pipe wall.


2014 ◽  
Vol 266 ◽  
pp. 456-462 ◽  
Author(s):  
Weiguo Cao ◽  
Wei Gao ◽  
Yuhuai Peng ◽  
Jiyuan Liang ◽  
Feng Pan ◽  
...  

2013 ◽  
Vol 807-809 ◽  
pp. 1505-1513 ◽  
Author(s):  
Amir A.B. Musa ◽  
Xiong Wei Zeng ◽  
Qing Yan Fang ◽  
Huai Chun Zhou

The optimum temperature within the reagent injection zone is between 900 and 1150°C for the NOX reduction by SNCR (selective non-catalytic reduction) in coal-fired utility boiler furnaces. As the load and the fuel property changes, the temperature within the reagent injection zone will bias from the optimum range, which will reduces significantly the de-NOX efficiency, and consequently the applicability of SNCR technology. An idea to improve the NOX reduction efficiency of SNCR by regulating the 3-D temperature field in a furnace is proposed in this paper. In order to study the new method, Computational fluid dynamics (CFD) model of a 200 MW multi-fuel tangentially fired boiler have been developed using Fluent 6.3.26 to investigate the three-fuel combustion system of coal, blast furnace gas (BFG), and coke oven gas (COG) with an eddy-dissipation model for simulating the gas-phase combustion, and to examine the NOX reduction by SNCR using urea-water solution. The current CFD models have been validated by the experimental data obtained from the boiler for case study. The results show that, with the improved coal and air feed method, average residence time of coal particles increases 0.3s, burnout degree of pulverized coal increases 2%, the average temperature at the furnace nose decreases 61K from 1496K to 1435K, the NO emission at the exit (without SNCR) decreases 58 ppm from 528 to 470 ppm, the SNCR NO removal efficiency increases 10% from 36.1 to 46.1%. The numerical simulation results show that this combustion adjustment method based on 3-D temperature field reconstruction measuring system in a 200 MW multi-fuel tangentially fired utility boiler co-firing pulverized coal with BFG and COG is timely and effective to maintain the temperature of reagent injection zone at optimum temperature range and high NOX removal efficiency of SNCR.


2021 ◽  
Vol 62 (3) ◽  
pp. 484-489
Author(s):  
E. B. Butakov ◽  
V. A. Kuznetsov ◽  
A. V. Minakov ◽  
A. A. Dekterev ◽  
S. V. Alekseenko

2019 ◽  
Vol 368 ◽  
pp. 156-162 ◽  
Author(s):  
Dejian Wu ◽  
Zeyang Song ◽  
Martin Schmidt ◽  
Qi Zhang ◽  
Xinming Qian

Sign in / Sign up

Export Citation Format

Share Document