injection zone
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 15)

H-INDEX

12
(FIVE YEARS 1)

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1828
Author(s):  
Xianglong Li ◽  
Shaoyan Hu ◽  
Deyong Wang ◽  
Tianpeng Qu ◽  
Qi Quan ◽  
...  

Considering solidification, a large eddy simulation (LES) model of two-phase flow was established to simulate the thermal–magnetic flow coupled fields inside a jumbo bloom. The magnetic field was calculated based on Maxwell’s equations, constitutive equations, and Ohm’s law. An enthalpy–porosity technique was used to model the solidification of the steel. The movement of the free surface was described by the volume of fluid (VOF) approach. With the effect of electromagnetic stirring (MEMS), the vortices in the bloom tended to be strip-like; large vortices mostly appeared in the injection zone, while small ones were found near the surface of the bloom. It is newly found that even though the submerged entry nozzle (SEN) is asymmetrical about the bloom, a biased flow can also be found under the effect of MEMS. The reason for this phenomenon is because the magnetic force is asymmetrical and transient. A high frequency will reduce the period of biased flow; however, the frequency should not be too high because it could also intensify meniscus fluctuations and thus entrap slag droplets in the mold. The velocity near the solidification front can also be increased with a higher frequency.


2021 ◽  
Author(s):  
Shuang Zheng ◽  
Mukul Sharma

Abstract Reservoir cooling during waterflooding or waste-water injection can significantly alter the reservoir stress field by thermo-poro-elastic effects. Colloidal particles in the injected water decrease the matrix permeability and buildup the injection pressure. Fractures may initiate and propagate from injectors. These fractures are of great concern for both environmental reasons and strong influence on reservoir sweep and oil recovery. This paper introduces methods to fully couple reservoir simulation with wellbore flow models in fractured injection wells. A method to fully couple reservoir-fracture-wellbore models was developed. Fluid flow, solid mechanics, energy balance, fracture propagation, and particle filtration are modelled in the reservoir, fracture and wellbore domains. Effective stress in the reservoir domain is altered by thermo-poro-elastic effects during cold water injection. Fracture initiation and propagation induced by thermal and filtration effects is modelled in the fracture domain. Particle filtration on the borehole and fracture surfaces is modelled by matrix permeability reduction and filter cake build-up. Leakoff through the borehole and fracture surface is balanced dynamically. The coupled nonlinear system of equations is solved implicitly using Newton-Raphson method. We validate our model with existing analytical solutions for simple cases. We show how the poro-elasticity effect, thermo-elasticity effect, water quality, and wellbore open/cased conditions influence well injectivity, induced fracture propagation and flow distribution. Simulation results show that water quality and thermal effects control fluid leak-off and fracture growth. While it is difficult to predict the exact location of fracture initiation due to reservoir heterogeneity, we proposed a reasonable method to handle fracture initiation without predefined fracture location in the water injection applications. In open-hole completions, this may lead to "thief" fractures propagating deep into the reservoir. Thermal stress changes in the injection zone are shown to be significant because of the combined effect of forced convection, heat conduction and poroelasticity. The accurate predictions of thermal stress in different reservoir layers allow us to study fracture height growth and containment numerically for the first time. We show that controlling the temperature and the injection water quality is also found to be an effective way to ensure fracture containment.


2021 ◽  
Author(s):  
Wan Muhammad Luqman Sazali ◽  
Sahriza Salwani Md Shah ◽  
M Shahir Misnan ◽  
M Zuhaili Kashim ◽  
Ahmad Faris Othman ◽  
...  

Abstract When developing a high CO2 field, oil and gas companies must consider the best and most economical carbon capture and storage (CCS) plan. After considering the distance of the storage site and storage capacity, PETRONAS has identified 2 carbonate fields, known as X Field and N Field in East Malaysia as the potential CO2 storage site. Interestingly, both fields are different, as X field is a high CO2 green field, while N field is a depleted gas field. The research team’s initial hypothesis is that N Field would have more severe geochemical reaction between CO2, brine and carbonates compared to X Field, since X field is already saturated with CO2. In order to test the hypothesis, samples from these two fields were selected to undergo static batch reaction analysis, and changes in porosity were determined using Digital Core Analysis (DCA). Both X and N fields are carbonate gas fields, with aquifer zone located below gas zones. The aquifer zones are the preferable CO2 injection zone because the deeper the zone, the longer it will take for the plume migration to happen. For static batch reaction analysis, samples each field were selected from the aquifer zone. After Routine Core Analysis (RCA) and Quality Control (QC), the samples were scanned under the high resolution microCT scan, before they were saturated into the respective synthetic brine. After saturation is completed, both brine and samples were placed inside a batch reactor, where the reactor’s pressure and temperature are set according to the field’s pressure and temperature. Once stabilized, the supercritical CO2 is injected into the brine, and was left for 45 days with constant observation. After aging with supercritical CO2, the samples were then scanned under microCT scan once again, using the same resolution, before being analysed via image processing software. Using registration algorithm software, both pre and post CO2 aging images were overlapped and subtracted digitally. The difference images were analyzed to determine the change in porosity. Samples from X Field has around 1% p.u. increase in porosity, while samples from N field shows increment of 2% p.u. porosity. While N field (depleted field) has higher reaction compared to X field (high CO2) field as per hypothesis, the difference is very minimal, which is much less than expected. The usage of DCA in the analysis enabled the team to determine minute changes that were happening during CO2 batch reaction. Without DCA, the 1% changes usually regarded as equipment’s error margin. The next step would be modelling, where the lab results will be upscaling into field scale, for modelled longer period of time. Hence, although the porosity changes between X and N field are very small under laboratory condition, it can have greater impact in field scale.


2021 ◽  
Author(s):  
Barzan Ahmed ◽  
Farhad Abdulrahman Khoshnaw ◽  
Mustansar Raza ◽  
Hossam Elmoneim ◽  
Kamil Shehzad ◽  
...  

Abstract A case study is presented detailing the methodology used to perform the clean-out operation in a water disposal well of Khurmala Field, Kurdistan Region of Iraq. Untreated disposed water caused scaling and plugging in perforated liner and in the open hole that eventually ceased injection. Multiple attempts and investments were made in recent years to resume access to the injection zone using high-pressure hydro-jetting tools coupled with acid treatments. However, these attempts yielded futile efforts. Before proceeding with the decision of workover, it was decided to go for one final attempt to regain wellbore access using Fluidic Oscillator (SFO). Fluidic Oscillator (SFO) having pulsing, cavitation and helix jetting action was used in combination with a train of fluids consisting of diesel, 28% HCl and gel. The clean out was performed in stages of 10m, to clean the fill from 1091m to 1170m. Since the well bore was initially isolated from the injection zone, the cleanout was conducted with non-nitrified fluids. As the cleanout progressed and access to the liner and open hole was regained, the circulation of insoluble fill to surface required a lighter carrying fluid. Nitrification, volume of the fluids, batch cycling, and ROP were designed considering the downhole dynamic changes expected during each stage of the operation. The combination of SFO, the thorough selection of treatment fluids and the accurate downhole hydraulics simulations pertaining to different stages of the operation offered an effective solution and regained the connectivity between the wellbore and the injection zone. The injection rate of water increased from 0 bpm at 700 psi to 15 bpm at 200 psi. Throughout this operation, the SFO helix, cavitation, and acoustic pulse (alike) jetting proved to be more effective than other single acting rotating jetting tools. Also, Environmental impact was reduced by eliminating the need for a rig workover operation. The matching of the injection pressure when the well was first completed and the post job value indicated that the complete zone was exposed and scale deposits were removed from the critical matrix or bypassed. SFO has an effective jetting near wellbore region, while the kinetic energy transferred via fluid makes the impact stronger in the deeper region. Internal mechanism of the tool allows it to handle high pumping rate and pressures, external finishing offer multi-port orientation of outflow that allows targeting the fill in desired directions. Presently the SFO used in the case study is the only technology that has pulse, cavitation, and helix jetting structure. Also, since the tool does not require redressing, it proves to be an efficient, safe and cost effective alternative


2021 ◽  
Author(s):  
Franz Marketz ◽  
David Brown ◽  
Roman Alyabiev ◽  
Pavel Khudorozhkov ◽  
Oleg Sychov

Abstract The cuttings re-injection (CRI) well in the Astokh area of Piltun-Astokhskoye field offshore Sakhalin Russia is one of the longest operating drilling waste disposal wells in the oil and gas industry worldwide. The Astokh area has been developed as a waterflood and is operated by Sakhalin Energy, a joint venture between Gazprom, Shell, Mitsui, and Mitsubishi. The Astokh CRI well has been utilized for waste injection for over 16 years. About 300,000 m3 of waste has been disposed into the main injection zone of the CRI well. Monitoring and modelling the CRI process to understand the evolution of the disposal domain is paramount for safeguarding further disposal operations. The disposal domain can be described as a complex system of multiple hydraulic and natural fractures due to injection under fracturing conditions. CRI domain evaluation includes analysis of historical injection pressures to identify the reasons of continuous injection pressure increase with increasing cumulative waste volumes disposed, to confirm domain containment, and to predict remaining domain capacity. Transient pressure analysis has revealed that the fracture closure pressure, driven by pore pressure increase and the accumulation of injected solid-phase waste, is the key parameter affecting injection pressures. Injection intensity, periods of shut-in, large overflushes, and solids-free liquids injections with corresponding solids and stresses redistribution are the other factors that affecting the pressure trends. CRI domain mapping was carried out with history-matched time-lapse 3D hydraulic fracture models. Injection pressure history matching results reveal the fracture geometry evolution during well life. The distribution of the injected liquid phase in the sand layers was modeled with a 3D dynamic reservoir sector model, matched with injection pressures and with formation pressure data in two offset wells, located at a distance of 1 and 2 kilometers, respectively. A matched model was then used to assure fracture containment for future waste disposal and to estimate remaining domain capacity. High-precision temperature and spectral noise logs were acquired in seawater injection and shut-in modes. The log-derived fracture height confirmed the domain size predicted by the matched model. 4D seismic data processing revealed that dimensions of Geomechanically Altered Rock Volume (GARV) were also in the same range as predicted by the model p. The integration of CRI domain evaluation with matched 3D hydraulic fracture models, well logs and 4D seismic demonstrated that injection pressure data collected during every injection cycle may be sufficient to characterize disposal domain evolution and to estimate domain capacity.


2021 ◽  
Author(s):  
Osama EL Helali ◽  
Mohamed Haddad ◽  
Salamat Gumarov ◽  
Said Benelkadi ◽  
Eduardo Bianco ◽  
...  

Abstract Cuttings reinjection (CRI) project at OFFSHORE ABU DHABI field achieved successful operation with three million barrels injected to date with zero subsurface failures setting up an environmentally friendly and cost-effective waste management success story that complies with zero discharge requirements. The project exceeded initial expectations by accommodating non-aqueous drilling waste from jack-up drilling rigs in addition to artificial islands own rigs. Subsurface assurance and engineering workflows proved to be effective in ensuring subsurface containment of drilling waste in challenging environment while ensuring efficiency of operation to meet demanding drilling schedules. Injection schedules and procedures were based on results of thorough subsurface FEED study and global best practices. Slurry fluid quality requirements were verified thru extensive laboratory tests. Throughout injection operation downhole pressure and temperature of the injection well was vigilantly monitored and analyzed along with well temperature survey and periodic fracture modeling updates of the fracture waste domain to ensure seamless fracturing of formation and containment of waste domain within selected formation. More than 3 million barrels of drill cuttings and associated drilling waste have been safely and successfully disposed of into a single injection zone of two cuttings reinjection wells over five years of project operation to date. No downtime was experienced and no impact to drilling schedule was induced demonstrating high capability of technology when designed and executed in right way. Results of actual injections showed accuracy and robustness of the engineering workflow implemented from Job design, planning and execution The paper presents unique and knowledge-based steps that contributed to success of project and set high bar for region for the drilling waste management.


2021 ◽  
pp. 0271678X2110136
Author(s):  
Paolo Bazzigaluppi ◽  
James Mester ◽  
Illsung L Joo ◽  
Iliya Weisspapir ◽  
Adrienne Dorr ◽  
...  

Ischemia is one of the most common causes of acquired brain injury. Central to its noxious sequelae are spreading depolarizations (SDs), waves of persistent depolarizations which start at the location of the flow obstruction and expand outwards leading to excitotoxic damage. The majority of acute stage of stroke studies to date have focused on the phenomenology of SDs and their association with brain damage. In the current work, we investigated the role of peri-injection zone pyramidal neurons in triggering SDs by optogenetic stimulation in an endothelin-1 rat model of focal ischemia. Our concurrent two photon fluorescence microscopy data and local field potential recordings indicated that a ≥ 60% drop in cortical arteriolar red blood cell velocity was associated with SDs at the ET-1 injection site. SDs were also observed in the peri-injection zone, which subsequently exhibited elevated neuronal activity in the low-frequency bands. Critically, SDs were triggered by low- but not high-frequency optogenetic stimulation of peri-injection zone pyramidal neurons. Our findings depict a complex etiology of SDs post focal ischemia and reveal that effects of neuronal modulation exhibit spectral and spatial selectivity.


2021 ◽  
Author(s):  
Thanudcha Khunmek ◽  
Keith Parrott ◽  
Ahamad Faidzal Bin Rosli

Abstract The completion of a highly deviated well involves overcoming significant deployment challenges during the drilling operations that require precise and effective conveyance and intervention. The conventional slickline intervention is unsuitable for wells with more than 60° deviation. The operator has sought to implement efficient, reliable and cost-effective deployment methods in delivering injector well. Thus, the operator decided on the e-line tubing tractor conveyed with e-line key and an e-line stroking tool. A tubing tractor and mechanical key and stroker were used to convey the wireline key in highly deviated wells. The key and stroker tools are latched into the sliding side doors (SSDs). They will activate open or close SSDs by down-strokes or up-strokes. In particular, the SSDs are closed when it is required to pressure up the tubing to set the packers. After the packers are set, an integrity test is conducted to confirm zonal isolation. Finally, the SSD is shifted open by the tubing tractor and a low rate injection test is performed to confirm the status of the SSD before handover the well. The operation had successfully installed multiple zones injection completions (MZC) in a highly deviated well and complemented the new completion design for the sand control in water injection well. The e-line tubing tractor and well key/stroker tools have met all operational and budgetary expectations. The traditional intervention methods in highly deviated wells, such as coil tubing, can be costly and potentially infeasible due to a footprint constraint on the drilling rig. The completion was successfully installed without any HSSE issues and the lesson learnt was recorded for future interventions when a change of injection zones is required. For a water injector completion design, equipment was selected based on reservoir requirements i.e. sand control, injection rates and pressure, etc. The goal was to prevent sand from flowing into the tubing when water injection is temporarily paused. To address this concern, the team designed and implemented a cost- effective Autonomous Inflow Control Device (AICD) with bypass valves equipped with SSDs for injection zone selectivity. This first well has been on injection for more than two years with no sand observed in the tubing or declines in the injection rate. The e-line tubing tractor and well key/stroker tools enabled the success of this operations and should be an option for completions in highly deviated wells. Additionally, this is the first time an AICD with bypass valves has been installed for a water injection well in the Gulf of Thailand. The success achieved with this operation in the Nong Yao field provides operators with a new solution for dealing with the water injection in the unconsolidated reservoirs.


Author(s):  
Nan Pan ◽  
Junbin Qian ◽  
Chengjun Zhao

It can divide the atomization effect in the direction of the nozzle axial injection into the jet area and the non-jet area by using the second crushing theory. On this basis, according to the feed liquid atomization particles discrete degree index of characteristics particle size of feed liquid atomization, it divides the injection zone into the atomization area and the diffusion area, so as to realize the axial direction of jet nozzle injection zone, atomization zone and the diffusion zone accurately. Simulation and experiment are used to verify the three zones of atomization nozzle. The division of three zones drives the study from the whole space of liquid distribution in the roller to atomization zone, clears the key zone of the roller in tobacco primary processing, and provides a basis for further work.


Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 303
Author(s):  
Nediljka Gaurina-Međimurec ◽  
Borivoje Pašić ◽  
Petar Mijić ◽  
Igor Medved

Oil and gas exploration and production activities generate large amounts of waste material, especially during well drilling and completion activities. Waste material from drilling activities to the greatest extent consists of drilled cuttings and used drilling mud with a smaller portion of other materials (wastewater, produced hydrocarbons during well testing, spent stimulation fluid, etc.). Nowadays, growing concerns for environmental protections and new strict regulations encourage companies to improve methods for the reduction of waste material, as well as improve existing and develop new waste disposal methods that are more environmentally friendly and safer from the aspect of human health. The main advantages of the waste injection method into suitable deep geological formations over other waste disposal methods (biodegradation, thermal treatment, etc.) are minimizing potentially harmful impacts on groundwater, reducing the required surface area for waste disposal, reducing the negative impact on the air and long-term risks for the entire environment. This paper gives a comprehensive overview of the underground waste injection technology, criteria for the selection of the injection zone and methods required for process monitoring, as well as a comprehensive literature overview of significant past or ongoing projects from all over the world.


Sign in / Sign up

Export Citation Format

Share Document